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A B S T R A C T   

The transport sector increasing energy demand has encouraged the search for alternative technologies for bio
fuels production with lower manufacturing costs and higher process efficiency and environmental performance. 
Lignocellulosic biofuels are equivalents to petroleum products and can be adapted to meet the properties re
quirements of current engines. However, their major disadvantages are the high production costs and the lack of 
infrastructure. In this work, the focus is on the implementation of a multi-objective optimization methodology for 
synthesis of novel intensified biomass-to-liquid (BtL) technologies with lower environmental impact and costs, as 
well as higher process safety and efficiency. A novel optimization methodology is applied to two process con
figurations that were synthesized in a previous work [1], in which the evaluation of a BtL processing super
structure under different economic constraints and product profiles scenarios was performed. From the 
configurations, the two case studies with higher production of both gasoline and diesel were selected for this 
work. For the synthesis of intensified BtL technologies, the optimal separation units’ design parameters that meet 
the combination of economic, safety and environmental indexes, and two green chemistry metrics were selected. 
By applying the methodology, the optimal intensified process presents a higher return on investment of 22 (%/y) 
compared to 18 (%/y) for the base case flowsheet.   

1. Introduction 

Given the actual situation of the transport fuels and its major 
drawbacks in terms of energy consumption, greenhouse gas (GHG) 

emissions and production costs, the chemical industry has increased its 
attention on biorefinery systems due to their capability of processing 
biobased feedstocks into valuable products in a sustainable and more 
profitable manner. For the application of biorefinery systems it is 
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necessary to focus on the synthesis of new process configurations ori
ented towards a shift from fossil-derived fuels and conventional biofuels 
to advanced biofuels in a more sustainable, environmentally, safety and 
economically feasible way. Biomass plants configurations can vary 
extensively since the processing tasks can be adapted according to 
desired product profiles. The application of alternative raw materials 
and the development of new technologies for the substitution of current 
technologies in the chemical industry will lead to new products such as 
biochemicals and biofuels that will replace the existing fossil-derived 
chemicals and fuels due to improved properties and lower production 
costs. For this, process systems engineering (PSE) tools such as process 
synthesis, process modelling and simulation, process intensification and 
process optimization should be applied to approach feasible processes. 

From these tools, process synthesis determines the optimal process
ing units and their interconnections, as well as the optimal design for the 
conversion of specific feedstocks into desired products. On the other 
hand, process intensification (PI) technologies are implemented to 
chemical production processes by evaluating possible modifications in 
equipment or different sections of the process that can offer drastic 
improvements to the total process. 

Nowadays, PI strategies have increased their application aiming at 
improving chemical plants by designing cost-effective, safer, environ
mentally friendly and compact new infrastructure [2]. In both process 
and equipment level innovative methodologies are defined and applied 
to achieve improvements on the process efficiency, product quality, 
reduction of production costs and equipment size, as well as, minimizing 
waste streams and energy consumption [3,4]. Improvement of a process 
can be achieved by the development of innovative equipment and 
techniques, adjustment of the process variables, enhancement of phys
ical and chemical phenomena in some unit operations, structural 
changes or replacement of unit operations by more promising process 
units, and utilization of new energy sources [5,6]. 

It is important to highlight that the different concepts and principles 
that can be varied and manipulated will generate partial alternative 
designs, from which the final intensified equipment and process will be 
synthesized [7]. However, it can be expected that the synthesis of these 
partial designs and its combination into the final improved process and 
equipment will not be straightforward; instead, there must be some 
conflicts and contradictions, and the identification of the most prom
ising intensified solution will demand a deep analysis and rigorous de
cision process [7,8]. 

To simplify the identification of the most promising PI option 
different technological and process constraints should be considered and 
various methods to quickly quantify the possible process improvements 
should be applied. Therefore, in order to select and implement the 
optimal PI technology, systematic methodologies are required to sup
port the identification of the most suitable option for a given problem 
and to remove or eliminate the encountered conflicts or contradictions 
[9]. Among the methods that have been classified to perform PI are 
heuristic, mathematical optimization, and hybrid methods [4]. 

As mentioned, knowledge-based heuristic methods (verified through 
simulation and experimentation) and process optimization methods are 
the most common methods for PI. The latter concentrates on optimizing 
operating parameters and adjusting the unit operations and process 
configuration according to a given objective or objectives. For the 
implementation of optimization-based methods, the formulation of a 
superstructure and its definition as a mixed integer nonlinear pro
gramming (MINLP) optimization problem is mostly required [4]. Like
wise, stochastic optimization methods can be useful to solve problems 
related to PI considering the variation of process design parameters in 
order to achieve a multi-objective function [10]. Moreover, since 
intensified processes show highly non-linear, non-convex models with a 
large number of continuous, discrete and disjunctive variables, sto
chastic optimization is a good strategy to be able to find optimal solu
tions in these circumstances. 

Several works have focused on unit operation-based representations 

and heuristic methods supported by process simulators for evaluation 
and identification of new intensified designs considering multi- 
objectives. For instance, Barnes et al. [11] developed a novel 
adsorption-based gas separation technology for PI of upstream gas 
separations and achieved CAPEX savings, as well as, equipment, weight 
and footprint reductions compared to conventional technologies. Rong 
[12] formulated a four-step procedure for intensification of distillation 
systems for multicomponent separations and systematically generated 
all the possible dividing-wall columns from the simple column se
quences aiming at reduce capital and energy costs. Likewise, 
Torres-Ortega et al. [13] evaluated the possible structural changes of a 
non-sharp quaternary distillation configuration and different alterna
tives were generated following the PI principle to reduce the number of 
equipment units and total annual cost. 

On the other hand, other authors have focused on PI strategies 
capable of synthesizing improved process alternatives for the production 
of biochemicals and have recently developed and fully set-up as opti
mization algorithms in automated and computationally efficient ways. 
These authors have focused their studies in PI methodologies based on 
building blocks instead of individual unit operations. In the phenomena- 
based building block (PBB) approach, also called bottom-up approach, 
to identify potential process options and their interconnections, the 
problem is defined and analyzed for a defined process improvement. 
Lutze et al. [14] describes this approach, in which phenomena are 
connected and screened to form process options considering feasibility 
and performance constraints. In this stepwise framework, the most 
promising process options are selected and then replaced by the required 
unit operations. Here, at unit operation level additional constraints are 
defined, to analyze its feasibility and performance with respect to an 
objective function. Demirel et al. [15,16] proposed and implemented a 
method for simultaneous process design and intensification considering 
the representation of process units, flowsheets and superstructures using 
building blocks. Through this method, optimal intensified designs for 
different case studies were achieved by solving the proposed MINLP 
model. The PBB superstructure handled various objective functions and 
generated different intensified flowsheets without knowing these de
signs beforehand. Babi et al. [17] proposed a computer-aided method
ology for PI, in which PBBs were used to represent process flowsheets 
and then, the most promising structure considering economic, life cycle 
and sustainability metrics was transformed into unit operations. Like
wise, Babi et al. [18] introduced a superstructure-based approach for the 
synthesis of intensified flowsheets that reduce the carbon footprint, 
energy costs and number of equipment. 

Moreover, other authors have applied hybrid methods, in which first 
intensified designs are generated with the support of heuristic rules and 
process simulators such as Aspen Plus and then are optimized by means 
of a multi-objective algorithm combining stochastic methods like dif
ferential evolution (DE) with tabu list (TL). For instance, Alcocer-Garcia 
et al. [19] evaluated improvements in the purification of levulinic acid 
by considering the substitution of conventional separation technologies 
with PI equipment including thermally couplings or single or multiple 
walls in a column. The resulting intensified designs were then optimized 
with a hybrid algorithm (Differential Evolution with Tabu List (DETL)) 
considering the minimization of the total annual cost and the environ
mental impact. 

However, the majority of these studies have only focused on applying 
one optimization approach for PI and most importantly, have mainly 
consider improvements emphasizing on evaluating either the technical, 
economic and/or environmental impact and/or sustainability without 
considering all these metrics simultaneously. 

In this work, several of these intensification approaches have been 
combined and five metrics have been selected to develop and evaluate a 
multi-objective optimization methodology for synthesis of novel inten
sified designs. To achieve this, two gasification-based process routes, 
which were synthesized in a previous work from the implementation of a 
MINLP superstructure algorithm [1], are selected as case studies for the 
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conversion of biomass-to-liquid transportation fuels into gasoline and 
diesel. Then, the case studies are intensified through the application of a 
multi-objective optimization methodology. The proposed methodology 
evaluates the intensification of the case studies considering the variation 
of process design parameters in order to meet a multi-objective function 
including the combination of economic, environmental and safety in
dexes, and two green chemistry metrics, namely resources efficiency and 
mass intensity, towards environmental sustainability. By synthesizing 
more sustainable intensified biomass conversion technologies with 
lower production costs, environmental impact, and safety risks, as well 
as higher resources efficiency, this approach can lead to an increase in 
the substitution of fossil-derived raw materials and the production of 
biofuels and biochemicals. Moreover, since the generation of bio-based 
products is achieved through the case studies, it is expected that the 
implementation of the selected indicators will allow to transform the 
case studies into more sustainable and green solutions by reducing the 
emissions and wastes and increasing their utilization according to the 
new principles of circular economy. 

1.1. Problem statement 

In a previous work, a BtL building block superstructure was defined 
as a MINLP problem in the General Algebraic Modeling System (GAMS), 
which set the objective to minimize the total cost of manufacturing 
(TCOM) of BtL fuels under different constraint scenarios and product 
profiles [1]. From its implementation, different processing blocks in
terconnections were found and optimal process flowsheets’ configura
tions were generated, which demonstrated the power and usefulness of 
the mathematical approach. However, even though the economic as
pects are indeed a critical issue, the feasibility of the BtL processes not 
only relies on the lowest production costs but also in the lowest envi
ronmental impact, individual risks, and in the generation of sustainable 
process configurations. 

Based on this, in the present work a methodology for intensification 
of the most promising flowsheets’ configurations is presented. First, the 
process simulator Aspen Plus is used to perform the rigorous simulation 
of two process flowsheets, selected as case studies. Then, the optimiza
tion methodology for process synthesis-intensification through a sto
chastic algorithm DETL in a hybrid platform is implemented to the case 
studies. The hybrid platform involves the linking between the process 
simulator Aspen Plus and the multi-objective optimization algorithm 
programmed in Excel through a Visual Basic macro. Finally, for its 

implementation, an objective function combining the return on invest
ment (ROI), the eco-indicator 99 (EI99) and Individual risk (IR) as 
economic, environmental and safety indicators, respectively, is defined. 
Likewise, the sustainability of the BtL processes is quantified with two 
green metrics: resources efficiency (E-factor) and mass intensity (MI). By 
applying the methodology, the main purpose is to demonstrate the role 
of the variation of the unit operations’ design parameters in the inten
sification of a process and their correlation with the five objective 
functions. 

Besides the case studies, the proposed methodology for PI through 
multi-objective optimization approaches can be considered as a tool for 
different chemical processes to find economically and sustainable 
attractive designs with low environmental impacts and safety risks. 

2. Methodology 

The methodology of multi-objective optimization for PI is focused on 
the application of two optimization techniques, first, at process flowsheet 
level to find the optimal process configuration by interconnection of 
processing blocks through a superstructure-based algorithm [1], and 
second, at unit operation level for improvement of processing tasks by the 
variation of design parameters through a DETL algorithm, which main 
objective is to achieve a multi-objective function. The methodology of 
optimization for process synthesis-intensification is illustrated in Fig. 1. 

At the process flowsheet level, the process information including the 
required process units and equipment for the manufacturing process, as 
well as the input and output flowrates, and operating conditions are 
investigated and collected. From the selection of the processing steps 
and collected data, a superstructure-based optimization algorithm was 
set-up by Ibarra-Gonzalez et al. [1] As result of the superstructure 
implementation, novel flowsheet designs were synthesized under spe
cific product profile scenarios and aiming to reduce the TCOM of the BtL 
fuels production processes [1]. 

Then, at the unit operation level, which is the focus of this work, 
since most of these chemical processes have a multi-objective nature and 
usually there are several objectives in conflict between them, a multi- 
objective optimization method is implemented for PI. For its imple
mentation, first, the selection of case studies is performed by analyzing 
and comparing the novel flowsheets configurations synthesized from the 
superstructure approach and by selecting the two process flowsheets 
that meet specific criteria. Then, the rigorous simulation of the case 
studies is performed in Aspen Plus considering a lignocellulosic biomass 

Fig. 1. Multi-objective optimization methodology for process synthesis-intensification.  
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feedstock capacity of 50,000 kg/h. The capacity of the plant has been 
selected according to the availability of the forestry biomass, mainly 
wood residues, in the Nordic countries where forests cover a consider
able part of the whole land area. For instance, in Finland and Sweden the 
percentage of forest area is 86 % and 51 %, respectively [20,21]. In 
Denmark only 11 % of land area is covered by forest and in Norway 20 % 
[22]. 

The process simulations provide the real plant separation technolo
gies’ configurations and needs for the optimal process routes. Moreover, 
these simulation flowsheets are the starting point for the multi-objective 
optimization of the optimal process routes in terms of equipment design 
variables. 

The next step is the implementation of a DETL method for process 
optimization, which is carried out in a hybrid platform. The hybrid 
platform involves the linking between the process simulator Aspen Plus 
and a multi-objective optimization algorithm programmed in Excel 
through a Visual Basic macro. This method can evaluate the possible 
improvements of the selected processes based on technical, economic, 
environmental and safety indicators, as well as green chemistry metrics. 

After the set-up of the algorithm, the specification of design pa
rameters and their corresponding search ranges in a feasible region is 
performed, which allows finding the optimal operating design parame
ters and re-designing equipment towards the objective function. From 
the variation and manipulation of the unit operations design parame
ters, not only one intensified solution is obtained but several intensified 
solutions. The intensified solutions are evaluated and the process flow
sheet with the design parameters that best fit the objective function 
(combination of performance indexes) is selected. Moreover, when a 
new intensified equipment or process is designed for the substitution of 
an existing one, it is necessary to evaluate and compare the initial pro
cess design with the final intensified design using the same platform to 
keep the consistency of the comparison and to further determine if its 
implementation is practical, feasible and suitable for the industrial 
sector. Finally, after identifying the most promising PI option, the 
intensified unit operations can be integrated in the total process flow
sheet to evaluate its technical feasibility. 

All the steps presented by this methodology approach can be iterated 
and applied to different flowsheet configurations or chemical processes. 

In the following sections, the explanation and implementation of the 
proposed methodology is described in detail. 

3. Selection of case studies 

In the previous work by Ibarra-Gonzalez et al. [1] novel process 
flowsheets were generated for the conversion of softwood biomass into 
liquid biofuels. Among the novel process flowsheets, five are 
gasification-based technologies for the production of gasoline and 
diesel. BtL conversion via gasification followed by Fischer–Tropsch (FT) 
synthesis and syncrude upgrading reactions produces high-quality fuels 
compatible with conventional fossil fuels. Moreover, depending on the 
FT scheme (low temperature or high temperature) different product 
profiles can be achieved. 

In this work, the methodology proposed in Fig. 1 is applied to the 
previously synthesized gasification-based process flowsheets. For this, as 
starting point, two of the novel flowsheet designs by Ibarra-Gonzalez 
et al. [1] were selected as case studies. The selection of the two pro
cess flowsheets for the multi-objective optimization was performed 
based on the following criteria and supported by the information re
ported in Table 1. The criteria defined for the selection of the case 
studies is listed in order of importance. 

Criteria for selection of case studies:  

• Higher production of both gasoline and diesel fuels  
• Lower total cost of manufacturing per gasoline gallon equivalent 

(TCOMGGE)  
• Lower total cost of manufacturing (TCOM) 

Therefore, the process configurations that present the higher pro
duction of both fuels and promote the simultaneous production of gas
oline and diesel, and that were found as the optimal technological routes 
in terms of TCOM for the production of both synthetic fuels were 
selected. These case studies are gasification-based process routes fol
lowed by syngas upgrading to hydrocarbons via high temperature (HT) 
and/or low temperature (LT) FT reactions and subsequent fractional 
hydrocarbon upgrading to transportation fuels, and final separation of 
desired fuels and by-products. More specifically;  

1 BC3-GLTUF = Gasification followed by low temperature Fischer- 
Tropsch (FT) and FT fractional upgrading units (bio-based lique
fied petroleum gas (bioLPG) oligomerization, naphtha isomerization 
and catalytic reforming, and wax hydrocracking) and final upgraded 
product fractionation, as presented in Fig. 2.  

2 CA1-GLTHT = Gasification followed by simultaneous high and low 
temperature FT reactions and FT fractional upgrading blocks 
(distillate hydrotreating, wax hydrocracking, naphtha isomerization 
and reforming, and tail gas alkylation) and final upgraded product 
fractionation, as presented in Fig. 3. 

As can be observed in Figs. 2 and 3, the separation columns (C) 
presented in each process flowsheet configuration were numbered as C. 
n (C.1, C.2, C.3…C.n), which is done to facilitate the identification, 
analysis and further optimization set up. 

The multi-objective optimization methodology considering the 
variation of the unit operations’ design parameters will be applied only 
for the intensification of the separation units C.n. of the selected case 
studies to find the optimal operating conditions that meet an objective 
function that combines economic, environmental and safety indexes, as 
well as the evaluation of two green chemistry metrics (resources effi
ciency and mass intensity). 

To implement the optimization methodology for intensification, 
first, it is required to perform the rigorous simulation of the case studies’ 
process flowsheets. These process flowsheets are the initial process de
signs to be intensified by the optimization algorithm through the hybrid 
platform. The rigorous simulation will be described in the following 
section and the implementation of the hybrid platform for the multi- 
objective optimization of the case studies is presented in Section 5. 

4. Case studies flowsheet set-up and rigorous simulations on 
Aspen Plus 

After the selection of the case studies, the next step is to perform their 

Table 1 
Comparison of the novel processes synthesized from the superstructure-based 
[1,23].   

BC3- 
GLTUF 

CA1- 
GLTHT 

CA2- 
GLTHT 

CA3- 
GLTHT 

Upgraded prod. [kg/ 
h] 

700 1,022 1,069 1,030 

Total fuel prod. wt. % 87 90 97 45 
Gasoline wt. % 38 69 80 10 
Diesel wt. % 49 21 17 35 
CCtot($/year)  82,834 88,412 88,652 95,115 
COL($/year)  1,621,120 1,621,120 1,621,120 1,621,120 
CRM($/year)  4,680,232 6,934,368 7,313,331 3,955,324 
ECtot($/year)  152,704 235,434 229,412 122,105 
CWT($/year)  4,289,046 4,484,208 4,371,508 4,456,510 
TCOM($/year) 15,668,889 18,784,844 19,105,008 14,949,035 
TCOM w/energy 

integration ($/year) 
15,341,811 18,274,260 18,766,123 14,680,510 

Productivity (GGE/ 
year) 

1,903,308 2,416,304 3,586,161 1,800,690 

TCOMGGE($/GGE) at 
500 kg/h feed 

8.1 7.5 5.2 8.1  
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rigorous simulation to generate the initial process designs to be inten
sified. For the modeling and simulation of BtL industrial processes, 
including reaction and separation technologies, the definition of a sub
stitute mixture is required. Defining the real intermediate stream mix
tures for the case studies allow finding the most suitable separation 
processes to be intensified through the multi-objective optimization al
gorithm. Therefore, model compounds are used to represent the com
plex mixtures, namely syngas, FT hydrocarbon product, upgraded 
fractions and final advanced transportation fuels. The selection of the 
model compounds will depend on the experimental information avail
able on the literature for each of the product streams. For instance, the 
model compounds selected for the representation of the low tempera
ture Fischer-Tropsch (LTFT) product mixture are presented in Table 2, 
which were selected using as reference the generic composition of Fe- 
LTFT syncrude reported by de Klerk [24] and literature data [25,26]. 
The biomass gasification was carried out in a fluidized bed reactor using 
as gasifying agents steam and air at 800− 1000 ◦C, residence times of 3–4 
s, and atmospheric pressures [27,28]. The operating conditions of the 
LTFT reaction are 200− 250 ◦C, 2–2.5 MPa with an inlet H2:CO ratio of 
syngas of 2:1 [28,29]. 

After the mixtures’ definition, process flowsheet set-up and rigorous 
simulations are performed in Aspen Plus V8.8. For the simulation set-up, 
the thermodynamic package Soave-Redlich-Kwong equation of state 
with Kabadi-Danner mixing rules was selected due to its recommended 
application for mixtures containing water and hydrocarbons [30]. It 
provides high accuracy in water–hydrocarbon systems over a wide range 
of temperatures and predicts the instability of the liquid phase [31]. In 
addition, the electrolyte and non- electrolyte NRTL model with Red
lich–Kwong equation of state were employed for the separation units. To 
model the unit operations, the Aspen Plus Yield reactor, RYield, was 
used to model the gasification and hydrotreating reactions. The stoi
chiometric reactor (RStoic) was used to model the combustor and the 
upgrading of the FT hydrocarbons. The separation units were model 
using the RadFrac block and the final fractionating column was model 
with a PetroFrac. All modules in the flowsheets of the selected case 

studies were solved in Aspen by means of solving the entire set of MESH 
(material balances, equilibrium relationships, summation equations, 
and heat (enthalpy) balances). Moreover, an input plant capacity of 50, 
000 kg/h (forest residues) considering the availability of the feedstock in 
the Nordic countries was selected to resemble a real plant capacity more 
closely. 

The resulting process flowsheets are the initial process designs to be 
intensified in terms of the separation processes’ design parameters. The 
intensification will be achieved through the implementation of an 
optimization algorithm in a hybrid platform, as described in the 
following section. 

5. Implementation of hybrid multi-objective optimization 
algorithm to case studies 

The next step after the synthesis and rigorous simulation of the 
selected novel flowsheet designs is to implement a multi-objective 
optimization method in a hybrid platform to find the process routes’ 
optimal operating conditions that meet the objective function con
formed by the combination of economic, environmental and safety in
dexes, as well as green chemistry metrics. The simultaneous evaluation 
of sustainable, economic, environmental and safety aspects at the design 
stage represents an important improvement in selecting the optimal 
intensified BtL process route. 

More specifically, the multi-objective optimization of the two BtL 
case studies is performed using a multi-objective optimization technique 
known as Differential Evolution with Tabu List (DETL). For the opti
mization, as objective function, the combination of five different and 
contrasting indexes representing the economic factor (return on in
vestment), environmental impact (eco-indicator 99), and the process 
safety (individual risk) as well as two green metrics (resources efficiency 
and mass intensity) has been defined. The implementation of the DETL 
method is carried out in a hybrid platform, which involves the linking 
between the process simulator Aspen Plus and a DETL optimization al
gorithm programmed in Excel through a Visual Basic (VB) macro, as 

Fig. 2. Case Study 1: Process flowsheet for BC3-GLTUF from superstructured-based approach.  

Fig. 3. Case Study 2: Process flowsheet for CA1-GLTHT from superstructured-based approach.  
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depicted in Fig. 4. 
Process simulators, such as Aspen Plus enable the modeling and 

detailed economic evaluation of current and novel process flowsheets. 
However, in a process simulator, the optimization of the process struc
ture is not possible without varying the parameters by hand. Moreover, 
if economical and other target functions are chosen, the parameter 

optimization becomes a tedious and difficult task. Thus, the most effi
cient strategy is to combine a rigorous simulation model with a robust 
multi-objective optimization algorithm. 

The coupling between Aspen Plus and Microsoft Excel was per
formed by defining in VB macros the optimization method and the 
different data that is being exchanged between the platforms. For 
instance, as can be observed in Fig. 4, the data from Aspen Plus to 
Microsoft Excel includes mass flowrates, mass fractions and mole frac
tions, heat duties, unit operations’ temperatures, liquid and vapor 
densities in the column stages and so on. On the other hand, the data 
from Microsoft Excel to Aspen Plus includes the definition of the search 
ranges (in the feasible region) that the design parameters can take until 
finding the optimal operation conditions of the system. These decision 
variables include the columns’ number of stages, feed stage, reflux ratio, 
bottom rate, column diameter and so on. Furthermore, objective func
tions, constraint vectors of purity and mass flowrate of components, 
equations and literature information for the calculation of economic, 
environmental and security factors and green chemistry metrics were 
also defined in Microsoft Excel. 

It is important to clarify that in this work, for the calculation of 
economic, environmental, security indexes and green chemistry metrics, 
all unit operations including separation and reaction units are consid
ered. However, the effect of the variation of the design parameters on 
the performance indexes can be only evaluated for the separation units 
because the reactions units were defined based on stoichiometric re
actions and conversions. 

5.1. Multi-objective optimization method 

The stochastic methods have been proven as capable of solving 
complex optimization problems, highly non-linear and potentially non- 
convex [32,33]. DETL has its basis in natural selection theory. Initially, 
Differential Evolution (DE) was proposed considering a single objective 
function [34]. Further, the method was adapted by Madavan and Field 
[35] to solve multi-objective problems. DE is a parallel direct search 
method which utilizes NP D-dimensional parameter vectors Xi,G, in 
which i can take values of 1, 2,…,NP. The DE algorithm is summarized in 
four steps: initialization, mutation, crossover, evaluation, and selection. 

In the initialization step, the algorithm searchs in a D-dimensional 
space ℜD, which starts randomly as: 

X→
i,G =

[
X1,i,G, X2,i,G, X3,i,G, …, XD,i,G

]
(1) 

Regarding the mutation step, it has indeed a pretty similar biological 
meaning, which can be described as a change or disturbance with a 
random element. Starting from a parent vector (named target vector) 
Xi,G,i = 1, 2,3,…,NP, this parent vector is further muted to generate a 
donor vector. Finally, the trial vector is obtained recombining both the 
donor and target vector. The process can be depicted as follows: 

V→
i, G = X→

ri1, G
+ F.

(
X→
ri2, , G

− X→
ri3, G

)
(2)  

with random integer indexes r1, r2, r3 ∈ {1,2,…,NP} mutually 
different and with F > 0. F is a real and constant factor ∈ [0, 2], which 
controls the amplification of the differential variation X→

ri
2, , G

− X→
ri
3, G

. 

Following with the crossover step, the target vector exchanges its 
components with the target vector under this operation to form the trial 
vector U→

i, G = [u1, i G, u2, i G, u3, i G, …, uD, i G]. So, the trial vector is ob
tained as: 

uj,i,G = vj, i, G for j = 〈n〉D 〈n+ 1〉D, …, 〈n+ L − 1〉D
xj,i,G for all other j ∈ [1,D] (3) 

To keep the population size as a constant number, the selection step 
determines if the target or the trial vector survives from the generation 
(G) to the next generation (G + 1). The selection operation is described 
as follows: 

Table 2 
LTFT product mixture from woody biomass.  

Product Fraction Carbon Range Component Mass % 

Tail Gas C1-C2 Methane 4,3   
Ethylene 1   
Ethane 1 

LPG C3-C4 Propene 2,94   
Propane 0,74   
Butene 3,06   
Butane 1,06 

Naphtha C5-C10 1-pentene 1,45   
N-pentane 0,53   
Hexene 1,44   
N-hexane 0,53   
Heptene 1,3   
Heptane 0,61   
Octene 1,23   
Octane 0,58   
Nonene 1,15   
Nonane 0,54   
Decene 1,13   
Decane 0,51   
1-pentanol 0,42   
1-hexanol 0,53   
1-heptanol 0,35 

Distillate C11-C22 Undecene 0,84   
Undecane 2,14   
Dodecene 0,76   
Dodecane 1,94   
Tridecene 0,68   
Tridecane 1,73   
Tetradecene 0,6   
Tetradecane 1,54   
Pentadecene 0,54   
Pentadecane 1,37   
Hexadecene 0,48   
Hexadecane 1,21   
Heptadecene 0,42   
Heptadecane 1,07   
Octadecene 0,37   
Octadecane 0,95   
Nonadecene 0,32   
Nonadecane 0,82  

C11-C22 Eicosene 0,28   
Eicosane 0,72   
Uneicosene 0,41   
Uneicosane 0,01   
1-undecanol 0,12   
1-dodecanol 0,11   
1-tridecanol 0,07 

Wax C22+ C22-ane 0,87   
C22-ene 0,28   
C23-ane 0,87   
C23-ene 0,16   
C24-ane 0,87   
C24-ene 0,11   
C25-ane 0,87   
C25-ene 0,08   
C26-ane 0,87   
C26-ene 0,05   
C27-ane 0,87   
C27-ene 0,02   
C28-ane 0,86   
C29-ane 0,86   
C30-ane 42,26 

Aqueous products C1-C5 Methanol 0,45   
Propanol 1,03   
Butanol 2,41   
Acetic Acid 0,3  

P. Ibarra-Gonzalez et al.                                                                                                                                                                                                                      



Chemical Engineering and Processing - Process Intensification 162 (2021) 108327

7

X→
i, G+1 = U→

i, G if f
(
U→
i, G

)
≤ f

(
X→
i, G

)

X→
i, G+1 = X→

i, G if f
(
U→
i, G

)
> f

(
X→
i, G

) (4) 

Regarding Tabu concepts, Both the Tabu list concept (TL) and Tabu 
Search (TS) previously proposed by Glover [36] allow avoiding revis
iting the search space by keeping a record of the visited points. TL is 
randomly initialized at an initial population and continuously updated 
with the newly generated trial individuals. This tabu check is carried out 
in the generation step to the trial vector, and the new trial individual is 
generated repeatedly until it is not near to any individual in the TL. The 
total trial individuals (NP) are generated by the repetition of the above 
steps. The newly generated NP trial vectors are combined with the 
parent population to form a combined population with total 2NP 
individuals. 

5.2. Hybrid platform: link between Microsoft Excel-aspen plus 

The global optimization process is performed in a hybrid platform 
linking Aspen Plus and Microsoft Excel. This method was previously 
implemented by Zhang and Rangaiah [37]. In Microsoft Excel, the DETL 
algorithm is written by means of a visual basic macro and the model of 
the process configurations are solved in Aspen Plus. Initially, the vector 
of decision variables is sent from Microsoft Excel to Aspen Plus by means 
of dynamic data exchange (DDE). Those values are assigned to process 
variables in Aspen Plus modeler. After simulation, Aspen Plus returns 
the output data to Microsoft Excel as resulting vector containing output 
data (flow streams, mass and mole fractions, reboiler heat duty, 
condenser and reboiler temperatures, etc.). Finally, Microsoft Excel 
analyzes the objective function values and proposes new values of de
cision variables according to DETL methodology. The parameters used 
for the DETL optimization process were: 120 individuals, 800 maximum 
number of generations, a tabu list size of 60 individuals (50 % of the 
total number of individuals), a tabu radius of 1 × 10− 6, a mutation 
probability of 0.3 and crossover probability of 0.8. These parameters 
were obtained from preliminary calculations performed by Srinivas and 
Rangaiah [38,39]. 

5.3. Objective function: performance indexes 

The case studies BC3-GLTUF and CA1-GLTHT were designed and 
intensified having as objective function the combination of five indexes 
including the return on investment (ROI), individual risk (IR) as quan
tification of the potential risk of the process, the Eco-indicator 99 (EI99) 
that quantifies the environmental impact and two green chemistry 
metrics (resources efficiency and mass intensity). The performance in
dexes are described below. 

5.3.1. Return on investment (ROI) 
The return on investment (ROI) is the annual interest rate made by 

the profits on the original investment, it provides a snapshot view of the 
profitability of the plant. The ROI calculation is based on the annual 
revenue, the annual production costs and the total capital investment, as 
depicted in Eq. (5) [40]. The ROI is generally stated as a percentage per 
year. 

ROI =
annual revenue − annual production cost

total capital investment
× 100 (5)  

5.3.2. Environmental impact: eco-indicator 99 (EI99) 
The environmental impact is quantified with the Eco-indicator 99 

(EI99), which evaluates the sustainability of the processes and quantifies 
the environmental impact due to the multiple activities performed in the 
process [41]. The method is based in the evaluation of three major 
damage categories: human health, ecosystem quality and resources 
depletion. The impact categories include values of EI99 for respiratory 
effects, carcinogenic, land occupation and others reported by Geodkoop 
and Spriensma in their methodology report [42]. In the case of distil
lation columns, the factors that have the strongest influence on EI99 are 
the steam used to supply the heat duty, electricity utilized for pumping 
of cooling water, and the steel necessary to build the equipment [32,43]. 
The EI99 can be represented mathematically according to Eq. (6). 

EI99 =
∑

i
ωcias+

∑

i
ωciasl+

∑

i
ωciael (6)  

Where ω is a weighting factor for damage, ci is the value of impact for 
category i, “as” is the amount of steam utilized by the process, asl is the 
amount of steel used to build the equipment, and ael is the electricity 

Fig. 4. Hybrid multi-objective optimization algorithm implementation.  
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required by the process. The values for the impact categories ci have 
been reported in literature [42]. 

5.3.3. Security impact: individual risks (IR) 
The security impact will quantify the individual risks (IR) and 

identify the process route that may cause less damage with less fre
quency. The IR can be defined as the risk of injury or decease to a person 
in the vicinity of a hazard. The main objective of this index is the esti
mation of likelihood affectation caused by the specific incident that 
occurs with a certain frequency. The mathematical expression for 
calculating the individual risk in reactors and separation units is pre
sented in Eq. (7) [44]. 

IR =
∑

fiPx,y (7)  

Where fi is the occurrence frequency of incident i, whereas Px,y is the 
probability of injury or decease caused by the incident i. The frequency fi 
values for each incident were taken according to those reported by 
American Institute of Chemical Engineers [44]. 

For the calculation, the information of approximately 120 compo
nents at the inlet and outlet of unit operations was given including heat 
of combustion, lethal concentration (LC50) (Concentration of the 
chemical in air that kills 50 % of the test animals during the observation 
period), lower and upper flammability limit, vapor density and molec
ular weight. 

5.3.4. Resources efficiency (E-factor) 
The E-factor is defined as the mass ratio of waste to product, as 

depicted in Eq. (8) [45]. The E-factor is the actual amount of waste 
produced in the process, defined as everything but the desired product. 
It includes reagents and solvent losses, all process aids and byproducts, 
and so on. However, water is generally excluded from the calculation 
[46]. In most cases, inclusion of water used in the process can lead to an 
exceptionally high E-factor, which makes the environmental impact 
appear much worse than it actually is and indicate that a process is not 
particularly efficient when it actually is [47]. It is important to clarify 
that when an aqueous waste stream is considered in the process, only the 
inorganic salts and organic compounds contained in the water are 
counted. 

Efactor =
mass of all wastes

mass of product
(8) 

The ideal value of the E-factor is zero. Nevertheless, different in
dustry sectors present different E-factors depending on the degree of the 
technical development of the industry, the competitiveness of particular 
products, the cost of waste as a part of the products selling price and 
other factors. Common E-factor’s values in the chemical industry sectors 
have are reported in Table 3. Moreover, this metric is a useful measure of 
the potential environmental acceptability of a chemical process. For 
instance, a higher E-factor means more waste and, thus, greater negative 
environmental impact [46]. 

5.3.5. Mass intensity (MI) 
Mass Intensity (MI) measures the amount of material needed to 

synthesize a desired product or products, as depicted in Eq. (9). It takes 
into account yields, stoichiometry, solvents, and reagents used in a 

reaction mixture. More precisely, MI considers everything that is put 
into a reaction vessel including reactants, reagents, solvents, catalysts 
and so on. It also includes all mass used in acid, base, salt and organic 
solvent washes, and organic solvents used for extractions, crystalliza
tions, or for solvent switching [45,48]. MI is expressed on a weight/
weight basis and in the ideal situation it should present a value of 1. 

MI =
total mass used in a process or process step

mass of product
(9) 

As can be observed from Eq. (9), the calculation of MI includes 
everything that is used in a process or process step, but water is excluded 
from the calculation. Water is not included because is generally not 
integral to the chemical reaction and is mainly used during work-up 
operations such as phase separations (e.g. scrubbing and fractionation). 

5.3.6. Multi-objective function for intensification 
In this work, as described previously, the simultaneous evaluation of 

economics, environmental impact, inherent safety and sustainability is 
performed at the design stage, which represents an important 
improvement in selecting the optimal intensified process route that 
meets these indicators. More specifically, the multi-objective optimiza
tion problem considers the maximization of the return on investment 
and the minimization of the environmental impact, individual risks and 
process wastes towards the synthesis of the most promising design for 
the BtL conversion through gasification-based technologies. 

Thus, once the economic, environmental, safety and sustainability 
(green metrics) indexes and the decision variables have been defined, 
the mathematical optimization problem considering all performance 
indexes, variables and constraints can be expressed according to Eq. 
(10). 

min
[

1
ROI

,EI99,IR,Efactor,MI
]

= f
(
Nti,Fsi,Ri,FD/Bi ,VF,LF,Di,QRebi ,Fcj,i

)

(10)  

where Nti represents the total number of stages of column i, Fsi is the 
feed stage of column i, Ri is the reflux ratio of column i, FD/Bi is the 
distillate or bottom flowrate, VF is the interconnection vapor flow, LF is 
the interconnection liquid flow, Di is the diameter of column i, QRebi is 
the reboiler duty of column i, and Fcj,i is the flowrate of component j in 
column i. 

6. Variations and manipulation of unit operations’ design 
parameters 

In BtL processes, separations are essential components for the 
removal of impurities and for the recovery of product fractions that need 
to be upgraded into transportation fuels, as can be observed from Figs. 2 
and 3. However, they are highly energy-intensive and thus, account for a 
high proportion of the plant costs. PI can be adopted to reduce the en
ergy consumption and to improve the separation units’ efficiency by 
manipulation of their design parameters and generating intensified 
solutions. 

For these reasons, in this work, the multi-objective optimization of 
each case study considered the intensification of 10 separation units 
(C.1-C.9 and a stripper) through the manipulation of 47 continuous and 
discrete variables and the solution of the MESH equations. The optimi
zation algorithm considers the variation of these decision variables and 
the evaluation of the objective function formed by the combination of 
the five performance indexes. Table 4 shows the type of unit operation 
and the corresponding decision variables used in the optimization. 
Likewise, in Table 4, as example the search range used in the optimi
zation for intensification of BC3-GLTUF is presented. 

Initially, the search ranges were wider but after some optimization 
trials it was found that the range could be narrowed to reduce the 
convergence time and to focus on the feasible region. The search range is 

Table 3 
E-factors in the chemical industry.  

Type of industry sector E-Factor* 

Oil refining <0.1 
Bulk Chemicals <1− 5 
Fine Chemicals 5− 50 
Pharmaceuticals 25− 100  

* kg waste/kg product. 
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given to iteratively adjust the decision variables of each unit operation 
until achieving the optimal solution to the specified objectives. 

Furthermore, for the optimization problem of the selected process 
flowsheets’ configurations, the product streams flowrates were manip
ulated and the recoveries of the light key components or heavy key 
components in each distillate and/or bottom stream were included as 
constraints, as depicted as follows. 

If
(
minrecovery − actualrecovery

)
≤ 0, then the penalty is equal to 0,

else penalty =
( (

minrecovery − actualrecovery
)
∗ 1000

) (11) 

This means that if the actual component flowrate is higher or equal to 
the minimum recovery requirement, then the constraint is satisfied, and 
no penalty is given to the objective function. On the other hand, if the 
actual flowrate is lower than the minimum recovery then a big number 
equal to (

(
minrecovery − actualrecovery

)
∗1000) is given as penalty. Thus, the 

optimization problem is restricted to satisfy the constraint vector of mass 
flowrate for the interest components in the stream mixture. The same 
restrictions were applied for the constraint vector of purity. 

7. Generation and evaluation of separation processes’ 
intensified solutions 

After the optimization of the case studies BC3-GLTUF and CA1- 
GLTHT, the optimal set of results for the separation processes’ deci
sion variables and the corresponding economic, safety, environmental 
and green chemistry metrics indexes values were collected. The opti
mizations were carried out on two computers, one with Intel ® Core ™ 
i7-4770 @3.40 GHz and 8 GB of RAM, and the other with Intel ® Core ™ 
i5-2320 @3.00 GHz and 12 GB of RAM. To generate the intensified 
solutions 10 separation units and 47 variables were considered for each 
case study including continuous and discrete variables. For the gener
ation of the optimal intensified solutions, a computing time of approx
imately 2 months was necessary due to the complexity of the process 
designs. 

From all the intensified solutions generated by the optimization 

algorithm, pareto fronts are calculated. Pareto fronts are usually calcu
lated by turning the multi-objective optimization problem into a 
sequence of single-objective optimization problems or by exploiting 
evolutionary methods in which a set of candidate optimal solutions are 
trace along the Pareto front [49]. Thus, to reduce and identify the 
intensified alternatives that better meet the objective function, pareto 
fronts between the indexes are generated. Then, the optimal vector is 
identified by analyzing all the trends between the five different and 
contrasting indexes representing the economic factor (return on in
vestment), environmental impact (eco-indicator 99), and the process 
safety (individual risk) as well as the incorporation of green metrics 
(resources efficiency and mass intensity). This optimal vector represents 
the intensified solution that meets the objective function without 
compromising one index more than the other. From the selected optimal 
vector, the corresponding design parameters for each intensified case 
study are found and collected. By applying this approach, the most 
promising intensified process route among all the process routes can be 
identified. 

From the results collected for the performance indexes, pareto front 
charts were generated as depicted in Figs. 5–8. All Pareto fronts were 
obtained after 96,000 evaluations, as afterwards, the vector of decision 
variables did not produce any meaningful improvement. Thus, it was 
assumed that the DETL algorithm achieved the convergence at the tested 
numerical terms. The results reported here correspond to the best so
lutions obtained. Each vector in the plots represents a different design 
for the case studies under analysis. 

In Figs. 5 and 6, the pareto fronts (for BC3-GLTUF and CA1-GLTHT, 
respectively) comparing the individual risk (IR) vs the Eco-indicator 99 
(EI99) are presented. From the pareto fronts, the optimal vector, which 
corresponds to the process design that minimizes both the individual 
risks and environmental impact was selected. According to this, in 
Figs. 5 and 6, the vector highlighted in red is the one selected as the best 
structure that has been identified in the subspace of alternatives not only 
considering these two indexes, but by considering the five indexes 
simultaneously. 

In Fig. 7, the pareto front for CAI-GLTHT comparing the return on 
investment (ROI) vs the individual risks (IR) is presented. As can be 
observed from Fig. 7, the trend of the pareto front shows that if the re
turn on investment increases the individual risks of the plant are also 
increased. When selecting the optimal vector, it is necessary to analyze 
all the intensified solutions and select the one that achieves the desired 
objective without compromising the indexes. This analogy is necessary 
to find the most suitable values for the design parameters that will in
crease the feasibility of the plant. In this optimization approach the 
objective is to find the optimal vector that presents the maximum ROI 
and the minimum IR simultaneously. This vector has been highlighted in 
red as depicted in Fig. 7. For representation purposes, only the pareto 
front for CAI-GLTHT is presented since the same trend was observed for 
BC3-GLTUF. 

In Fig. 8, the Pareto front for the mass intensity (MI) vs the resources 
efficiency (E-factor) is presented for the case study BC3-GLTUF. From 
Fig. 8, it can be observed that the vectors in the pareto front present a 
linear trend, which means that the amount of material needed to syn
thesize a desired product (MI) is a direct function of the mass ratio of 
waste to product (E-Factor). The relationship shown in Fig. 8 between 
MI and the E-factor meets Eq. (12) [50]. The same trend was observed in 
the pareto front for case study CA1-GLTHT. 

Mass intensity = E Factor + 1 (12) 

From the pareto fronts calculated and the charts presented, the 
design parameters (number of stages, feed stage, reflux ratio, bottom 
flowrate, diameter, condenser and reboiler duty and so on) for the 
optimal vectors were collected. The performance indexes’ optimal vec
tors correspond to the same set of design parameters for each of the case 
studies. In the following section, a detailed discussion regarding the 
relationship between the performance indexes and the design 

Table 4 
Type of unit operation and decision variables used in the multi-objective 
optimization.  

Type of unit operation Type of 
variable 

Category Search range 

Absorber (C.1) 

Number of 
stages 

Discrete 5− 15 

Feed stages Discrete 5− 15 
Diameter Continuous 1− 6 (m) 
Water inlet 
flowrate Continuous 

23150− 23600 
(kmol/h) 

Distillation column (C.2- 
C.8); e.g. ranges for C.3 

Number of 
stages Discrete 10− 25 

Feed stage Discrete 7− 16 
Reflux ratio Continuous 4.5− 8 
Bottom 
flowrate 

Continuous 31900− 32000 
(kg/h) 

Diameter Continuous 1− 3 (m) 

Fractionation column (C.9) 
Stripper 

Number of 
stages Discrete 10− 16 

Feed stage Discrete 9− 16 
Bottom 
flowrate 

Continuous 6700− 6850 (kg/ 
h) 

Diameter Continuous 1− 7.5 (m) 
Steam inlet 
flowrate Continuous 

11000− 14000 
(kg/h) 

Main column connecting 
stages:  
Liquid Draw Discrete 10− 12 
Overhead 
return 

Discrete 7− 9  

Number of 
stages Discrete 3− 6  
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Fig. 5. Pareto front between IR and EI99 for BC3-GLTUF.  

Fig. 6. Pareto front between IR and EI99 for CAI-GLTHT.  

Fig. 7. Pareto front between ROI and IR for CAI-GLTHT.  
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parameters is given. 

8. Results and discussion: Selection of optimal intensified 
designs 

From the vectors presented in Figs. 5–8, the corresponding design 
parameters values for each of the separation units involved in each 
intensified case study were collected, as presented in Tables 5–8. The 
results allowed to compare the design parameters and performance in
dexes of the initial configurations with their corresponding intensified 
configurations. Likewise, it was possible to evaluate the impact of the 
design parameters on the performance indexes. 

In Tables 5 and 6, the optimal results considering the design pa
rameters and performance indexes for BC3-GLTUF/I (where I refers to 
the intensified version) are presented and compared with the initial BC3- 
GLTUF configuration. Likewise, in Tables 7 and 8, the design parameters 
and performance indexes for the process configuration CA1-GLTHT and 
the corresponding intensified configuration (CA1-GLTHT/I) are pre
sented. The initial design parameters for each column C.n is presented 
and compared with the intensified version of each column C.n/I, where 
n is the column number. 

From the pareto fronts, the trends between the performance indexes 
can be observed. For instance, from Figs. 5 and 6, it is possible to observe 
that for the process design vector that causes less damage with less 
frequency, the value for the Eco-indicator 99 is the highest, which means 
that the safer it is process, the greater the environmental impact will be. 
Contrary, to obtain a process with lower environmental impact, the 
probability of individual accidents will increase, including instanta
neous and continuous releases. For instance, as can be observed in both 
Figs. 5 and 6, the process design with the lowest environmental impact, 
depicted in the pareto fronts charts as vector A, is the one with the 
highest IR of the process. And vice versa, the process design (Vector B) 
that presents the lowest IR is also the one that presents the highest 
environmental impact. Thus, the selection of the optimal vector is not 
based on the one with the lowest environmental impact or the lowest 
individual probability risk from all the alternatives but the one that 
presents a balanced behavior among the performance indexes and thus, 
achieves the objective function considering all the indexes 
simultaneously. 

More specifically, for the case studies, the optimal vector is the one 
with the separation units’ design parameters that achieve the objective 
considering the combination of the indexes presented in Figs. 5–8. 
Meaning that the individual risk is minimized, smaller equipment sizes 
and lower condenser and reboiler duties are achieved and thus, a lower 
value of the Eco-indicator 99 is observed. Likewise, the intensified 
design presents lower values for the E-Factor and MI metrics, which 

indicates that the amount of wastes is being reduced and the process 
efficiency is being increased, as presented in Fig. 8 for the relationship 
between these indexes. Last but not less important, the profitability of 
the plant is increased by achieving higher values of the return on 
investment. 

Concerning the relationship between the design parameters and the 
performance indexes, from the plots and the data for the case studies’ 
initial configurations, the initial designs (depicted in Tables 5 and 7 as C. 
n) present higher environmental impacts due to separation units with 
greater number of stages, larger diameters and thus, more steel neces
sary to build the equipment. Moreover, higher reflux ratios and reboiler 
and condenser duties are observed, which reflects on higher energy 
consumption. This is because a higher condenser and reboiler duty mean 
higher steam and electricity consumption. Likewise, an increase of the 
reflux ratio will consequently increase the reboiler duty and the corre
sponding EI99 of the column. 

In addition, if the column diameter is not sized properly, the column 
will not perform correctly, and operational problems will occur leading 
to an increase on the occurrence frequency of incidents like leaking or 
total loss of matter. This analogy explains why the separation units’ 
initial configurations (C.n) present higher individual risks (IR). 

From the data reported in Tables 5 and 7, it is possible to observe in 
detail these trends. For instance, for BC3-GLTUF/I (Table 5), the ma
jority of the intensified column designs (C.1/I, C.2/I, C.4/I, C.5/I and 
C.6/I) present higher number of stages than the initial designs but pre
sent smaller diameters and lower reflux ratios, leading to lower 
condenser and reboiler duties and lower environmental impact. These 
behaviors were also observed in the intensified separation units C.1/I, 
C.2/I, C.4/I and C.5/I for CA1-GLTHT/I and lower environmental 
impact (EI99) was achieved, as depicted in Table 7. The calculated 
values for the eco-indicator EI99 were of 23,102,926.8 and 
27,125,724.5 (points/year) for the initial designs of BC3-GLTUF and 
CA1-GLTHT, respectively, compared to the EI99 values of the intensified 
versions, which were 16,067,458.6 (points/year) for BC3-GLTUF/I and 
23,265,289.5 (points/year) for CA1-GLTHT/I. Likewise, since the col
umns’ diameters of the initial designs were not sized properly, these 
designs presented higher values of IR compared to the intensified de
signs. For instance, the IR values of the initial designs BC3-GLTUF and 
CA1-GLTHT were of 5.82 × 10− 4(Probability/year) and 6.18 ×

10− 4(Probability/year), respectively, compared to the ones of the 
intensified designs that were 5.81 × 10− 4 (Probability/year) for BC3- 
GLTUF/I and 6.137 × 10− 4 (Probability/year) for CA1-GLTHT/I. This 
also is reflected on the economic metrics. For instance, since the inten
sified separation units for BC3-GLTUF present smaller equipment sizes 
and lower energy consumption, a lower TCOM per gasoline gallon 
equivalent of $6.76/gge was achieved compared to $6.79/gge for the 

Fig. 8. Pareto front between MI and E-Factor for BC3-GLTUF.  

P. Ibarra-Gonzalez et al.                                                                                                                                                                                                                      



Chemical Engineering and Processing - Process Intensification 162 (2021) 108327

12

initial designs. Likewise, a higher return on investment of 21(%/y) was 
achieved compared to the 18(%/y) calculated for the initial design. 

For the intensified design CA1-GLTHT/I lower TCOMGGE and higher 
ROI values were calculated. For instance, the TCOMGGE was reduced 
from $5.59/gge to $5.55/gge and the ROI increased from 19(%/y) to 22 
(%/y). 

Moreover, concerning the green chemistry metrics, the optimal 
design of the process allows to improve the recovery and conversion of 
the product streams without the use of excess reactants and therefore, a 
reduction of wastes is achieved. The less amount of wastes produced 
lead to an increase of the process efficiency and thus, a reduction on the 
E-Factor and MI. For BC3-GLTUF, the E-Factor and MI values were of 

1.259 
(

kg
kg

)

and 2.259 
(

kg
kg

)

compared to 1.253 
(

kg
kg

)

and 2.253 
(

kg
kg

)

calculated for the intensified configuration BC3-GLTUF/I. The same was 
observed for CA1-GLTHT, which E-Factor and MI values were 1.094 
(

kg
kg

)

and 2.094 
(

kg
kg

)

, respectively, compared to the intensified design 

that presented E-Factor values of 1.092 
(

kg
kg

)

and MI values of 2.092 
(

kg
kg

)

. 

Furthermore, regarding the comparison between both intensified 
processes, BC3-GLTUF/I presents lower EI99 and IR compared to CA1- 
GLTHT/I. The main reason why CA1-GLTHT/I presents higher IR is 
because it presents higher production of transportation fuels and thus, 
since the calculation of the IR considers instantaneous and continuous 
chemical releases, it is obvious that if the inlet flow of the unit opera
tions increase then the IR will increase. Therefore, in the case of an 
event, greater affectation and duration of the incidents will be incurred 
due to more source of toxic releases, fires, and explosions. 

Regarding the EI99, the condenser and reboiler duties reported in 
Table 7 for CA1-GLTHT/I for most of the columns are higher compared 
to the ones reported in Table 5 for BC3-GLTUF/I. This is observed 
because an increase on the energy consumption is presented due to 
steam and electricity consumption to recover the higher product flow
rates produced by CA1-GLTHT/I. Likewise, in CA1-GLTHT/I most of the 
columns (C.2, C.3, C.5 and C.8) present greater number of stages 
compared to BC3-GLTUF/I and thus, more steel to build the equipment 
is required and an increase on the EI99 is presented. 

On the other hand, BC3-GLTUF/I presents higher E-Factor and MI, 
which translates to less process efficiency due to higher production of 
wastes. The process efficiency can be reflected in the total biofuels 
production since BC3-GLTUF/I presents a diesel production of 23,191.9 
kg/h and a gasoline production of 27,509.5 kg/h, which in total is lower 
compared to the total production of CA1-GLTHT/I (diesel production of 
14,399.9 kg/h and a gasoline production of 39,177.2 kg/h). The higher 
productivity achieved in CA1-GLTHT/I is also reflected on the TCOMGGE 
of $5.55/gge and the higher ROI of 22 (%/y), as reported in Table 7. 
Therefore, due to the process efficiency and economic metrics the CA1- 
GLTHT/I is the optimal process route for the maximization of the pro
duction of biofuels and ROI, and for the minimization of the wastes and 
the TCOMGGE. The detailed stream table for CA1-GLTHT/I is presented 
in Table S1, and the corresponding process flowsheet set-up in Aspen 
Plus is depicted in Fig. S1. 
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  Table 6 

Additional design parameters considered for the fractionation column and 
coupled stripper (C.9) for BC3-GLTUF.  

Design parameters C.9 C.9/I 

Steam inlet flowrate (kg/h) 12000 12065 
Liquid Draw 10 12 
Overhead return 8 8 
Stripper-Number of stages 4 5  
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9. Conclusion 

In this work, the development and implementation of a multi- 
objective optimization methodology for synthesis of novel intensified 
BtL technologies was performed. The proposed optimization method
ology was implemented for the synthesis and intensification of two 
gasification-based technological routes for production of biofuels in a 
more sustainable, environmentally, safety and economically feasible 
manner. In a previous work, from the implementation of a BtL pro
cessing superstructure algorithm, new BtL process routes were obtained 
under different product profile scenarios. From the different scenarios, 
the two gasification-based process routes that presented higher pro
duction of both gasoline and diesel fuels were selected as case studies for 
this work. 

For the synthesis of the case studies, in the previous work, the 
minimization of production costs was considered, however, other 
important sustainable, environmental and safety indexes to increase the 
feasibility of the processes were not included. Therefore, the focus of the 
implementation of this methodology was to synthesize the intensified 
process configurations, where the optimal selection of separation units’ 
design parameters meets the combination of five objectives, namely 
economic, safety and environmental indexes, and green chemistry 
metrics towards more sustainable practices. 

More specifically, a DETL multi-objective optimization technique in 
a hybrid platform (Aspen Plus- Microsoft Excel) was implemented to 
find the optimal design parameters that minimize the economic, safety 
and environmental factors. The DETL method was implemented for the 
two case studies that promote the production of both gasoline and 
diesel, namely BC3-GLTUF and CA1-GLTHT. For the multi-objective 
optimization, unit operations’ design variables (number of stages, feed 
stage, reflux ratio, heat duty, diameter, etc.) and performance indexes 
(Return on Investment, Eco-indicator 99, individual risk, MI and E- 
Factor) were considered. From the optimization results, the CA1-GLTHT 
optimized configuration was selected as the optimal process route. This 
process route presented higher productivity, lower production of wastes, 
lower TCOMGGE and higher ROI and process efficiency. 

In this work, intensified solutions have been generated for sustain
able BtL fuels processes, which allow to have the state of the art of green 
processes for industrial application considering these new sustainable 
trends and circular economy. Overall, it was demonstrated that by 
applying the systematic optimization methodology, lignocellulosic BtL 
processes can be intensified considering as objective function the com
bination of five different and contrasting indexes and that the relation
ship between the indexes and the variation of the separation units’ 
decision variables can be quantified. 

Moreover, to make the proposal economically viable for its industrial 
application, aspects like the raw material availability, location, plant 
capacity, transportation costs, government policies and so on need to be 
taken into account. 
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  Table 8 
Additional design parameters considered for the fractionation column and 
coupled stripper (C.9) for CA1-GLTHT.  

Design parameters C.9 C.9/I 

Steam inlet flowrate (kg/h) 12000 11957.1 
Liquid Draw 9 10 
Overhead return 8 8 
Stripper-Number of stages 4 5  
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