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Lignocellulosic biofuels are equivalents to petroleum products and can be adapted to meet the properties re-
quirements of current engines. However, their major disadvantages are the high production costs and the lack of
infrastructure. In this work, the focus is on the implementation of a multi-objective optimization methodology for
synthesis of novel intensified biomass-to-liquid (BtL) technologies with lower environmental impact and costs, as
well as higher process safety and efficiency. A novel optimization methodology is applied to two process con-
figurations that were synthesized in a previous work [1], in which the evaluation of a BtL processing super-
structure under different economic constraints and product profiles scenarios was performed. From the
configurations, the two case studies with higher production of both gasoline and diesel were selected for this
work. For the synthesis of intensified BtL technologies, the optimal separation units’ design parameters that meet
the combination of economic, safety and environmental indexes, and two green chemistry metrics were selected.
By applying the methodology, the optimal intensified process presents a higher return on investment of 22 (%/y)
compared to 18 (%/y) for the base case flowsheet.

1. Introduction emissions and production costs, the chemical industry has increased its
attention on biorefinery systems due to their capability of processing

Given the actual situation of the transport fuels and its major biobased feedstocks into valuable products in a sustainable and more
drawbacks in terms of energy consumption, greenhouse gas (GHG) profitable manner. For the application of biorefinery systems it is
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necessary to focus on the synthesis of new process configurations ori-
ented towards a shift from fossil-derived fuels and conventional biofuels
to advanced biofuels in a more sustainable, environmentally, safety and
economically feasible way. Biomass plants configurations can vary
extensively since the processing tasks can be adapted according to
desired product profiles. The application of alternative raw materials
and the development of new technologies for the substitution of current
technologies in the chemical industry will lead to new products such as
biochemicals and biofuels that will replace the existing fossil-derived
chemicals and fuels due to improved properties and lower production
costs. For this, process systems engineering (PSE) tools such as process
synthesis, process modelling and simulation, process intensification and
process optimization should be applied to approach feasible processes.

From these tools, process synthesis determines the optimal process-
ing units and their interconnections, as well as the optimal design for the
conversion of specific feedstocks into desired products. On the other
hand, process intensification (PI) technologies are implemented to
chemical production processes by evaluating possible modifications in
equipment or different sections of the process that can offer drastic
improvements to the total process.

Nowadays, PI strategies have increased their application aiming at
improving chemical plants by designing cost-effective, safer, environ-
mentally friendly and compact new infrastructure [2]. In both process
and equipment level innovative methodologies are defined and applied
to achieve improvements on the process efficiency, product quality,
reduction of production costs and equipment size, as well as, minimizing
waste streams and energy consumption [3,4]. Improvement of a process
can be achieved by the development of innovative equipment and
techniques, adjustment of the process variables, enhancement of phys-
ical and chemical phenomena in some unit operations, structural
changes or replacement of unit operations by more promising process
units, and utilization of new energy sources [5,6].

It is important to highlight that the different concepts and principles
that can be varied and manipulated will generate partial alternative
designs, from which the final intensified equipment and process will be
synthesized [7]. However, it can be expected that the synthesis of these
partial designs and its combination into the final improved process and
equipment will not be straightforward; instead, there must be some
conflicts and contradictions, and the identification of the most prom-
ising intensified solution will demand a deep analysis and rigorous de-
cision process [7,8].

To simplify the identification of the most promising PI option
different technological and process constraints should be considered and
various methods to quickly quantify the possible process improvements
should be applied. Therefore, in order to select and implement the
optimal PI technology, systematic methodologies are required to sup-
port the identification of the most suitable option for a given problem
and to remove or eliminate the encountered conflicts or contradictions
[9]. Among the methods that have been classified to perform PI are
heuristic, mathematical optimization, and hybrid methods [4].

As mentioned, knowledge-based heuristic methods (verified through
simulation and experimentation) and process optimization methods are
the most common methods for PI. The latter concentrates on optimizing
operating parameters and adjusting the unit operations and process
configuration according to a given objective or objectives. For the
implementation of optimization-based methods, the formulation of a
superstructure and its definition as a mixed integer nonlinear pro-
gramming (MINLP) optimization problem is mostly required [4]. Like-
wise, stochastic optimization methods can be useful to solve problems
related to PI considering the variation of process design parameters in
order to achieve a multi-objective function [10]. Moreover, since
intensified processes show highly non-linear, non-convex models with a
large number of continuous, discrete and disjunctive variables, sto-
chastic optimization is a good strategy to be able to find optimal solu-
tions in these circumstances.

Several works have focused on unit operation-based representations
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and heuristic methods supported by process simulators for evaluation
and identification of new intensified designs considering multi-
objectives. For instance, Barnes et al. [11] developed a novel
adsorption-based gas separation technology for PI of upstream gas
separations and achieved CAPEX savings, as well as, equipment, weight
and footprint reductions compared to conventional technologies. Rong
[12] formulated a four-step procedure for intensification of distillation
systems for multicomponent separations and systematically generated
all the possible dividing-wall columns from the simple column se-
quences aiming at reduce capital and energy costs. Likewise,
Torres-Ortega et al. [13] evaluated the possible structural changes of a
non-sharp quaternary distillation configuration and different alterna-
tives were generated following the PI principle to reduce the number of
equipment units and total annual cost.

On the other hand, other authors have focused on PI strategies
capable of synthesizing improved process alternatives for the production
of biochemicals and have recently developed and fully set-up as opti-
mization algorithms in automated and computationally efficient ways.
These authors have focused their studies in PI methodologies based on
building blocks instead of individual unit operations. In the phenomena-
based building block (PBB) approach, also called bottom-up approach,
to identify potential process options and their interconnections, the
problem is defined and analyzed for a defined process improvement.
Lutze et al. [14] describes this approach, in which phenomena are
connected and screened to form process options considering feasibility
and performance constraints. In this stepwise framework, the most
promising process options are selected and then replaced by the required
unit operations. Here, at unit operation level additional constraints are
defined, to analyze its feasibility and performance with respect to an
objective function. Demirel et al. [15,16] proposed and implemented a
method for simultaneous process design and intensification considering
the representation of process units, flowsheets and superstructures using
building blocks. Through this method, optimal intensified designs for
different case studies were achieved by solving the proposed MINLP
model. The PBB superstructure handled various objective functions and
generated different intensified flowsheets without knowing these de-
signs beforehand. Babi et al. [17] proposed a computer-aided method-
ology for PI, in which PBBs were used to represent process flowsheets
and then, the most promising structure considering economic, life cycle
and sustainability metrics was transformed into unit operations. Like-
wise, Babi et al. [18] introduced a superstructure-based approach for the
synthesis of intensified flowsheets that reduce the carbon footprint,
energy costs and number of equipment.

Moreover, other authors have applied hybrid methods, in which first
intensified designs are generated with the support of heuristic rules and
process simulators such as Aspen Plus and then are optimized by means
of a multi-objective algorithm combining stochastic methods like dif-
ferential evolution (DE) with tabu list (TL). For instance, Alcocer-Garcia
et al. [19] evaluated improvements in the purification of levulinic acid
by considering the substitution of conventional separation technologies
with PI equipment including thermally couplings or single or multiple
walls in a column. The resulting intensified designs were then optimized
with a hybrid algorithm (Differential Evolution with Tabu List (DETL))
considering the minimization of the total annual cost and the environ-
mental impact.

However, the majority of these studies have only focused on applying
one optimization approach for PI and most importantly, have mainly
consider improvements emphasizing on evaluating either the technical,
economic and/or environmental impact and/or sustainability without
considering all these metrics simultaneously.

In this work, several of these intensification approaches have been
combined and five metrics have been selected to develop and evaluate a
multi-objective optimization methodology for synthesis of novel inten-
sified designs. To achieve this, two gasification-based process routes,
which were synthesized in a previous work from the implementation of a
MINLP superstructure algorithm [1], are selected as case studies for the
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conversion of biomass-to-liquid transportation fuels into gasoline and
diesel. Then, the case studies are intensified through the application of a
multi-objective optimization methodology. The proposed methodology
evaluates the intensification of the case studies considering the variation
of process design parameters in order to meet a multi-objective function
including the combination of economic, environmental and safety in-
dexes, and two green chemistry metrics, namely resources efficiency and
mass intensity, towards environmental sustainability. By synthesizing
more sustainable intensified biomass conversion technologies with
lower production costs, environmental impact, and safety risks, as well
as higher resources efficiency, this approach can lead to an increase in
the substitution of fossil-derived raw materials and the production of
biofuels and biochemicals. Moreover, since the generation of bio-based
products is achieved through the case studies, it is expected that the
implementation of the selected indicators will allow to transform the
case studies into more sustainable and green solutions by reducing the
emissions and wastes and increasing their utilization according to the
new principles of circular economy.

1.1. Problem statement

In a previous work, a BtL building block superstructure was defined
as a MINLP problem in the General Algebraic Modeling System (GAMS),
which set the objective to minimize the total cost of manufacturing
(TCOM) of BtL fuels under different constraint scenarios and product
profiles [1]. From its implementation, different processing blocks in-
terconnections were found and optimal process flowsheets’ configura-
tions were generated, which demonstrated the power and usefulness of
the mathematical approach. However, even though the economic as-
pects are indeed a critical issue, the feasibility of the BtL processes not
only relies on the lowest production costs but also in the lowest envi-
ronmental impact, individual risks, and in the generation of sustainable
process configurations.

Based on this, in the present work a methodology for intensification
of the most promising flowsheets’ configurations is presented. First, the
process simulator Aspen Plus is used to perform the rigorous simulation
of two process flowsheets, selected as case studies. Then, the optimiza-
tion methodology for process synthesis-intensification through a sto-
chastic algorithm DETL in a hybrid platform is implemented to the case
studies. The hybrid platform involves the linking between the process
simulator Aspen Plus and the multi-objective optimization algorithm
programmed in Excel through a Visual Basic macro. Finally, for its
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implementation, an objective function combining the return on invest-
ment (ROI), the eco-indicator 99 (EI99) and Individual risk (IR) as
economic, environmental and safety indicators, respectively, is defined.
Likewise, the sustainability of the BtL processes is quantified with two
green metrics: resources efficiency (E-factor) and mass intensity (MI). By
applying the methodology, the main purpose is to demonstrate the role
of the variation of the unit operations’ design parameters in the inten-
sification of a process and their correlation with the five objective
functions.

Besides the case studies, the proposed methodology for PI through
multi-objective optimization approaches can be considered as a tool for
different chemical processes to find economically and sustainable
attractive designs with low environmental impacts and safety risks.

2. Methodology

The methodology of multi-objective optimization for PI is focused on
the application of two optimization techniques, first, at process flowsheet
level to find the optimal process configuration by interconnection of
processing blocks through a superstructure-based algorithm [1], and
second, at unit operation level for improvement of processing tasks by the
variation of design parameters through a DETL algorithm, which main
objective is to achieve a multi-objective function. The methodology of
optimization for process synthesis-intensification is illustrated in Fig. 1.

At the process flowsheet level, the process information including the
required process units and equipment for the manufacturing process, as
well as the input and output flowrates, and operating conditions are
investigated and collected. From the selection of the processing steps
and collected data, a superstructure-based optimization algorithm was
set-up by Ibarra-Gonzalez et al. [1] As result of the superstructure
implementation, novel flowsheet designs were synthesized under spe-
cific product profile scenarios and aiming to reduce the TCOM of the BtL
fuels production processes [1].

Then, at the unit operation level, which is the focus of this work,
since most of these chemical processes have a multi-objective nature and
usually there are several objectives in conflict between them, a multi-
objective optimization method is implemented for PI. For its imple-
mentation, first, the selection of case studies is performed by analyzing
and comparing the novel flowsheets configurations synthesized from the
superstructure approach and by selecting the two process flowsheets
that meet specific criteria. Then, the rigorous simulation of the case
studies is performed in Aspen Plus considering a lignocellulosic biomass

Process flowsheet level >

Superstructure-based optimization algorithm: Synthesis of novel
intensified flowsheet designs by interconnection of processing &

‘ blocks under product profile scenarios

v

Selection of two case studies for rigorous simulation in Aspen Plus

Implementation of hybrid multi-objective optimization algorithm
(DETL) to case studies

(]

Variations and manipulation of unit operations’ design
parameters

Unit operation level

(]

Generation of separation processes’ intensified solutions

(]

Evaluation of intensified solutions according to the process
flowsheet that best fit the objective function (combination of
indexes)

]

Selection of optimal intensified design and evaluation of technical
feasibility

Fig. 1. Multi-objective optimization methodology for process synthesis-intensification.
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feedstock capacity of 50,000 kg/h. The capacity of the plant has been
selected according to the availability of the forestry biomass, mainly
wood residues, in the Nordic countries where forests cover a consider-
able part of the whole land area. For instance, in Finland and Sweden the
percentage of forest area is 86 % and 51 %, respectively [20,21]. In
Denmark only 11 % of land area is covered by forest and in Norway 20 %
[22].

The process simulations provide the real plant separation technolo-
gies’ configurations and needs for the optimal process routes. Moreover,
these simulation flowsheets are the starting point for the multi-objective
optimization of the optimal process routes in terms of equipment design
variables.

The next step is the implementation of a DETL method for process
optimization, which is carried out in a hybrid platform. The hybrid
platform involves the linking between the process simulator Aspen Plus
and a multi-objective optimization algorithm programmed in Excel
through a Visual Basic macro. This method can evaluate the possible
improvements of the selected processes based on technical, economic,
environmental and safety indicators, as well as green chemistry metrics.

After the set-up of the algorithm, the specification of design pa-
rameters and their corresponding search ranges in a feasible region is
performed, which allows finding the optimal operating design parame-
ters and re-designing equipment towards the objective function. From
the variation and manipulation of the unit operations design parame-
ters, not only one intensified solution is obtained but several intensified
solutions. The intensified solutions are evaluated and the process flow-
sheet with the design parameters that best fit the objective function
(combination of performance indexes) is selected. Moreover, when a
new intensified equipment or process is designed for the substitution of
an existing one, it is necessary to evaluate and compare the initial pro-
cess design with the final intensified design using the same platform to
keep the consistency of the comparison and to further determine if its
implementation is practical, feasible and suitable for the industrial
sector. Finally, after identifying the most promising PI option, the
intensified unit operations can be integrated in the total process flow-
sheet to evaluate its technical feasibility.

All the steps presented by this methodology approach can be iterated
and applied to different flowsheet configurations or chemical processes.

In the following sections, the explanation and implementation of the
proposed methodology is described in detail.

3. Selection of case studies

In the previous work by Ibarra-Gonzalez et al. [1] novel process
flowsheets were generated for the conversion of softwood biomass into
liquid biofuels. Among the novel process flowsheets, five are
gasification-based technologies for the production of gasoline and
diesel. BtL conversion via gasification followed by Fischer-Tropsch (FT)
synthesis and syncrude upgrading reactions produces high-quality fuels
compatible with conventional fossil fuels. Moreover, depending on the
FT scheme (low temperature or high temperature) different product
profiles can be achieved.

In this work, the methodology proposed in Fig. 1 is applied to the
previously synthesized gasification-based process flowsheets. For this, as
starting point, two of the novel flowsheet designs by Ibarra-Gonzalez
et al. [1] were selected as case studies. The selection of the two pro-
cess flowsheets for the multi-objective optimization was performed
based on the following criteria and supported by the information re-
ported in Table 1. The criteria defined for the selection of the case
studies is listed in order of importance.

Criteria for selection of case studies:

e Higher production of both gasoline and diesel fuels

e Lower total cost of manufacturing per gasoline gallon equivalent
(TCOMggr)

e Lower total cost of manufacturing (TCOM)

Chemical Engineering and Processing - Process Intensification 162 (2021) 108327

Table 1
Comparison of the novel processes synthesized from the superstructure-based
[1,23].

BC3- CAl- CA2- CA3-
GLTUF GLTHT GLTHT GLTHT
Upgraded prod. [kg/ 700 1,022 1,069 1,030
h]
Total fuel prod. wt. % 87 90 97 45
Gasoline wt. % 38 69 80 10
Diesel wt. % 49 21 17 35
CCiot($/year) 82,834 88,412 88,652 95,115
CoL($/year) 1,621,120 1,621,120 1,621,120 1,621,120
Crm($/year) 4,680,232 6,934,368 7,313,331 3,955,324
ECiot($/year) 152,704 235,434 229,412 122,105
Cwr($/year) 4,289,046 4,484,208 4,371,508 4,456,510
TCOM($/year) 15,668,889 18,784,844 19,105,008 14,949,035
TCOM w/energy 15,341,811 18,274,260 18,766,123 14,680,510
integration ($/year)
Productivity (GGE/ 1,903,308 2,416,304 3,586,161 1,800,690
year)
TCOMgge($/GGE) at 8.1 7.5 5.2 8.1

500 kg/h feed

Therefore, the process configurations that present the higher pro-
duction of both fuels and promote the simultaneous production of gas-
oline and diesel, and that were found as the optimal technological routes
in terms of TCOM for the production of both synthetic fuels were
selected. These case studies are gasification-based process routes fol-
lowed by syngas upgrading to hydrocarbons via high temperature (HT)
and/or low temperature (LT) FT reactions and subsequent fractional
hydrocarbon upgrading to transportation fuels, and final separation of
desired fuels and by-products. More specifically;

1 BC3-GLTUF = Gasification followed by low temperature Fischer-
Tropsch (FT) and FT fractional upgrading units (bio-based lique-
fied petroleum gas (bioLPG) oligomerization, naphtha isomerization
and catalytic reforming, and wax hydrocracking) and final upgraded
product fractionation, as presented in Fig. 2.

2 CA1-GLTHT = Gasification followed by simultaneous high and low
temperature FT reactions and FT fractional upgrading blocks
(distillate hydrotreating, wax hydrocracking, naphtha isomerization
and reforming, and tail gas alkylation) and final upgraded product
fractionation, as presented in Fig. 3.

As can be observed in Figs. 2 and 3, the separation columns (C)
presented in each process flowsheet configuration were numbered as C.
n (C.1, C.2, C.3...C.n), which is done to facilitate the identification,
analysis and further optimization set up.

The multi-objective optimization methodology considering the
variation of the unit operations’ design parameters will be applied only
for the intensification of the separation units C.n. of the selected case
studies to find the optimal operating conditions that meet an objective
function that combines economic, environmental and safety indexes, as
well as the evaluation of two green chemistry metrics (resources effi-
ciency and mass intensity).

To implement the optimization methodology for intensification,
first, it is required to perform the rigorous simulation of the case studies’
process flowsheets. These process flowsheets are the initial process de-
signs to be intensified by the optimization algorithm through the hybrid
platform. The rigorous simulation will be described in the following
section and the implementation of the hybrid platform for the multi-
objective optimization of the case studies is presented in Section 5.

4. Case studies flowsheet set-up and rigorous simulations on
Aspen Plus

After the selection of the case studies, the next step is to perform their
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Hot Flue Gas
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Wastewater Tropsch
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Synthetic Gas

Gases

Naphtha Cat. Benzene

Reforming Wastewater

Gasoline Range

Diesel Range

Heavy Residue

Aqueous
Products

Hydrocracking

Hydrogen

Fig. 2. Case Study 1: Process flowsheet for BC3-GLTUF from superstructured-based approach.

LT- Fischer
Tropsch

SOFTWOOD
Hot Flue Gas

Dryer

Outlet Flue Gas

o Scrubber
rinder c1

Wastewater

HT- Fischer
Tropsch
Hot Sand

Combustor

Synthetic Gas

Gases

Naphtha Cat. Benzene

Reforming Wastewater

Gasoline Range

% Steam
Diesel Range

Heavy Residue

Aqueous
Products

Hydrocracking

Hydrogen

Fig. 3. Case Study 2: Process flowsheet for CA1-GLTHT from superstructured-based approach.

rigorous simulation to generate the initial process designs to be inten-
sified. For the modeling and simulation of BtL industrial processes,
including reaction and separation technologies, the definition of a sub-
stitute mixture is required. Defining the real intermediate stream mix-
tures for the case studies allow finding the most suitable separation
processes to be intensified through the multi-objective optimization al-
gorithm. Therefore, model compounds are used to represent the com-
plex mixtures, namely syngas, FT hydrocarbon product, upgraded
fractions and final advanced transportation fuels. The selection of the
model compounds will depend on the experimental information avail-
able on the literature for each of the product streams. For instance, the
model compounds selected for the representation of the low tempera-
ture Fischer-Tropsch (LTFT) product mixture are presented in Table 2,
which were selected using as reference the generic composition of Fe-
LTFT syncrude reported by de Klerk [24] and literature data [25,26].
The biomass gasification was carried out in a fluidized bed reactor using
as gasifying agents steam and air at 800—1000 °C, residence times of 3-4
s, and atmospheric pressures [27,28]. The operating conditions of the
LTFT reaction are 200—250 °C, 2-2.5 MPa with an inlet Hy:CO ratio of
syngas of 2:1 [28,29].

After the mixtures’ definition, process flowsheet set-up and rigorous
simulations are performed in Aspen Plus V8.8. For the simulation set-up,
the thermodynamic package Soave-Redlich-Kwong equation of state
with Kabadi-Danner mixing rules was selected due to its recommended
application for mixtures containing water and hydrocarbons [30]. It
provides high accuracy in water-hydrocarbon systems over a wide range
of temperatures and predicts the instability of the liquid phase [31]. In
addition, the electrolyte and non- electrolyte NRTL model with Red-
lich-Kwong equation of state were employed for the separation units. To
model the unit operations, the Aspen Plus Yield reactor, RYield, was
used to model the gasification and hydrotreating reactions. The stoi-
chiometric reactor (RStoic) was used to model the combustor and the
upgrading of the FT hydrocarbons. The separation units were model
using the RadFrac block and the final fractionating column was model
with a PetroFrac. All modules in the flowsheets of the selected case

studies were solved in Aspen by means of solving the entire set of MESH
(material balances, equilibrium relationships, summation equations,
and heat (enthalpy) balances). Moreover, an input plant capacity of 50,
000 kg/h (forest residues) considering the availability of the feedstock in
the Nordic countries was selected to resemble a real plant capacity more
closely.

The resulting process flowsheets are the initial process designs to be
intensified in terms of the separation processes’ design parameters. The
intensification will be achieved through the implementation of an
optimization algorithm in a hybrid platform, as described in the
following section.

5. Implementation of hybrid multi-objective optimization
algorithm to case studies

The next step after the synthesis and rigorous simulation of the
selected novel flowsheet designs is to implement a multi-objective
optimization method in a hybrid platform to find the process routes’
optimal operating conditions that meet the objective function con-
formed by the combination of economic, environmental and safety in-
dexes, as well as green chemistry metrics. The simultaneous evaluation
of sustainable, economic, environmental and safety aspects at the design
stage represents an important improvement in selecting the optimal
intensified BtL process route.

More specifically, the multi-objective optimization of the two BtL
case studies is performed using a multi-objective optimization technique
known as Differential Evolution with Tabu List (DETL). For the opti-
mization, as objective function, the combination of five different and
contrasting indexes representing the economic factor (return on in-
vestment), environmental impact (eco-indicator 99), and the process
safety (individual risk) as well as two green metrics (resources efficiency
and mass intensity) has been defined. The implementation of the DETL
method is carried out in a hybrid platform, which involves the linking
between the process simulator Aspen Plus and a DETL optimization al-
gorithm programmed in Excel through a Visual Basic (VB) macro, as
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Table 2
LTFT product mixture from woody biomass.

Product Fraction Carbon Range Component Mass %

Tail Gas C1-Co Methane 4,3
Ethylene 1
Ethane 1

LPG C3-Cy Propene 2,94
Propane 0,74
Butene 3,06
Butane 1,06

Naphtha Cs-Cio 1-pentene 1,45
N-pentane 0,53
Hexene 1,44
N-hexane 0,53
Heptene 1,3
Heptane 0,61
Octene 1,23
Octane 0,58
Nonene 1,15
Nonane 0,54
Decene 1,13
Decane 0,51
1-pentanol 0,42
1-hexanol 0,53
1-heptanol 0,35

Distillate C11-Ca2 Undecene 0,84
Undecane 2,14
Dodecene 0,76
Dodecane 1,94
Tridecene 0,68
Tridecane 1,73
Tetradecene 0,6
Tetradecane 1,54
Pentadecene 0,54
Pentadecane 1,37
Hexadecene 0,48
Hexadecane 1,21
Heptadecene 0,42
Heptadecane 1,07
Octadecene 0,37
Octadecane 0,95
Nonadecene 0,32
Nonadecane 0,82

C11-Co2 Eicosene 0,28

Eicosane 0,72
Uneicosene 0,41
Uneicosane 0,01
1-undecanol 0,12
1-dodecanol 0,11
1-tridecanol 0,07

Wax Coay Cao-ane 0,87
Coop-ene 0,28
Cy3-ane 0,87
Cy3-ene 0,16
Cy4-ane 0,87
Co4-ene 0,11
Cas-ane 0,87
Cys-ene 0,08
Cae-ane 0,87
Coe-ene 0,05
Cy7-ane 0,87
Cy7-ene 0,02
Cog-ane 0,86
Cag-ane 0,86
Csp-ane 42,26

Aqueous products C1-Cs Methanol 0,45
Propanol 1,03
Butanol 2,41
Acetic Acid 0,3

depicted in Fig. 4.

Process simulators, such as Aspen Plus enable the modeling and
detailed economic evaluation of current and novel process flowsheets.
However, in a process simulator, the optimization of the process struc-
ture is not possible without varying the parameters by hand. Moreover,
if economical and other target functions are chosen, the parameter

Chemical Engineering and Processing - Process Intensification 162 (2021) 108327

optimization becomes a tedious and difficult task. Thus, the most effi-
cient strategy is to combine a rigorous simulation model with a robust
multi-objective optimization algorithm.

The coupling between Aspen Plus and Microsoft Excel was per-
formed by defining in VB macros the optimization method and the
different data that is being exchanged between the platforms. For
instance, as can be observed in Fig. 4, the data from Aspen Plus to
Microsoft Excel includes mass flowrates, mass fractions and mole frac-
tions, heat duties, unit operations’ temperatures, liquid and vapor
densities in the column stages and so on. On the other hand, the data
from Microsoft Excel to Aspen Plus includes the definition of the search
ranges (in the feasible region) that the design parameters can take until
finding the optimal operation conditions of the system. These decision
variables include the columns’ number of stages, feed stage, reflux ratio,
bottom rate, column diameter and so on. Furthermore, objective func-
tions, constraint vectors of purity and mass flowrate of components,
equations and literature information for the calculation of economic,
environmental and security factors and green chemistry metrics were
also defined in Microsoft Excel.

It is important to clarify that in this work, for the calculation of
economic, environmental, security indexes and green chemistry metrics,
all unit operations including separation and reaction units are consid-
ered. However, the effect of the variation of the design parameters on
the performance indexes can be only evaluated for the separation units
because the reactions units were defined based on stoichiometric re-
actions and conversions.

5.1. Multi-objective optimization method

The stochastic methods have been proven as capable of solving
complex optimization problems, highly non-linear and potentially non-
convex [32,33]. DETL has its basis in natural selection theory. Initially,
Differential Evolution (DE) was proposed considering a single objective
function [34]. Further, the method was adapted by Madavan and Field
[35] to solve multi-objective problems. DE is a parallel direct search
method which utilizes NP D-dimensional parameter vectors X;g, in
which i can take values of 1, 2,...,NP. The DE algorithm is summarized in
four steps: initialization, mutation, crossover, evaluation, and selection.

In the initialization step, the algorithm searchs in a D-dimensional
space RP, which starts randomly as:

X = [Xii6, Xoi6, Xsic,

i

woes Xpig) (@)

Regarding the mutation step, it has indeed a pretty similar biological
meaning, which can be described as a change or disturbance with a
random element. Starting from a parent vector (named target vector)
Xig,i =1, 2,3,...,NP, this parent vector is further muted to generate a
donor vector. Finally, the trial vector is obtained recombining both the
donor and target vector. The process can be depicted as follows:

G~ X'J G +F. (X"z G - X"SG) @

with random integer indexes ry, r, r3 € {1,2,...,NP} mutually

different and with F > 0. F is a real and constant factor € [0, 2], which

controls the amplification of the differential variation X7 — X7
2,..G

36

Following with the crossover step, the target vector exchanges its
components with the target vector under this operation to form the trial
vector U; = [w1,ig, U2iG, Us i, ..., Up,ig). SO, the trial vector is ob-

tained as:

for j= (m), (n+1), .., (n+L—1),

Xjic for all other j € [1,D]

Uiic = Vjic 3)

To keep the population size as a constant number, the selection step
determines if the target or the trial vector survives from the generation
(G) to the next generation (G + 1). The selection operation is described
as follows:
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ata from Aspen to Excel includes:
Outlet components’ mass flowrates
Total mass flowrate from reactors
Components’ mole and mass fractions:
inlet and outlet streams
Total mass flowrate of fuel streams

e Condenser and reboiler heat duty and
temperature

e Column stages liquid and vapor density

e Column stages liquid and vapor flow
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Case studies:
Optimal process
configurations for
specific
constraints and
product profiles,

Rigorous Simulation
on Aspen Plus

Visual Basic Macro:
DETL Multi-objective
Optimization
algorithm and link
between platforms

Optimal Design
parameters for

Microsoft Excel each intensified

process route

Data from Excel to Aspen:

Decision variables’ search ranges:
Objective functions calculations
Constraint vectors of purity and mass
flow rate of components in each stream.
Penalties to keep search range in
feasible region

Fig. 4. Hybrid multi-objective optimization algorithm implementation.

XI?G+1 =U if f(U?G> Sf(X:G>

@
X?(;+1 = X?G if f(U:(;) >f(X:G)

Regarding Tabu concepts, Both the Tabu list concept (TL) and Tabu
Search (TS) previously proposed by Glover [36] allow avoiding revis-
iting the search space by keeping a record of the visited points. TL is
randomly initialized at an initial population and continuously updated
with the newly generated trial individuals. This tabu check is carried out
in the generation step to the trial vector, and the new trial individual is
generated repeatedly until it is not near to any individual in the TL. The
total trial individuals (NP) are generated by the repetition of the above
steps. The newly generated NP trial vectors are combined with the
parent population to form a combined population with total 2NP
individuals.

5.2. Hybrid platform: link between Microsoft Excel-aspen plus

The global optimization process is performed in a hybrid platform
linking Aspen Plus and Microsoft Excel. This method was previously
implemented by Zhang and Rangaiah [37]. In Microsoft Excel, the DETL
algorithm is written by means of a visual basic macro and the model of
the process configurations are solved in Aspen Plus. Initially, the vector
of decision variables is sent from Microsoft Excel to Aspen Plus by means
of dynamic data exchange (DDE). Those values are assigned to process
variables in Aspen Plus modeler. After simulation, Aspen Plus returns
the output data to Microsoft Excel as resulting vector containing output
data (flow streams, mass and mole fractions, reboiler heat duty,
condenser and reboiler temperatures, etc.). Finally, Microsoft Excel
analyzes the objective function values and proposes new values of de-
cision variables according to DETL methodology. The parameters used
for the DETL optimization process were: 120 individuals, 800 maximum
number of generations, a tabu list size of 60 individuals (50 % of the
total number of individuals), a tabu radius of 1 x 107%, a mutation
probability of 0.3 and crossover probability of 0.8. These parameters
were obtained from preliminary calculations performed by Srinivas and
Rangaiah [38,39].

5.3. Objective function: performance indexes

The case studies BC3-GLTUF and CA1-GLTHT were designed and
intensified having as objective function the combination of five indexes
including the return on investment (ROI), individual risk (IR) as quan-
tification of the potential risk of the process, the Eco-indicator 99 (EI99)
that quantifies the environmental impact and two green chemistry
metrics (resources efficiency and mass intensity). The performance in-
dexes are described below.

5.3.1. Return on investment (ROI)

The return on investment (ROI) is the annual interest rate made by
the profits on the original investment, it provides a snapshot view of the
profitability of the plant. The ROI calculation is based on the annual
revenue, the annual production costs and the total capital investment, as
depicted in Eq. (5) [40]. The ROI is generally stated as a percentage per
year.

annual revenue — annual production cost
X

ROI = —
total capital investment

100 5)

5.3.2. Environmental impact: eco-indicator 99 (EI99)

The environmental impact is quantified with the Eco-indicator 99
(E199), which evaluates the sustainability of the processes and quantifies
the environmental impact due to the multiple activities performed in the
process [41]. The method is based in the evaluation of three major
damage categories: human health, ecosystem quality and resources
depletion. The impact categories include values of EI99 for respiratory
effects, carcinogenic, land occupation and others reported by Geodkoop
and Spriensma in their methodology report [42]. In the case of distil-
lation columns, the factors that have the strongest influence on EI99 are
the steam used to supply the heat duty, electricity utilized for pumping
of cooling water, and the steel necessary to build the equipment [32,43].
The EI99 can be represented mathematically according to Eq. (6).

EI99 = ch,-as + Z(uciasl —+ Za)c;ael (6)
Where o is a weighting factor for damage, c; is the value of impact for

category i, “as” is the amount of steam utilized by the process, asl is the
amount of steel used to build the equipment, and ael is the electricity
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required by the process. The values for the impact categories c; have
been reported in literature [42].

5.3.3. Security impact: individual risks (IR)

The security impact will quantify the individual risks (IR) and
identify the process route that may cause less damage with less fre-
quency. The IR can be defined as the risk of injury or decease to a person
in the vicinity of a hazard. The main objective of this index is the esti-
mation of likelihood affectation caused by the specific incident that
occurs with a certain frequency. The mathematical expression for
calculating the individual risk in reactors and separation units is pre-
sented in Eq. (7) [44].

IR=) fP,, )

Where f; is the occurrence frequency of incident i, whereas Py, is the
probability of injury or decease caused by the incident i. The frequency f;
values for each incident were taken according to those reported by
American Institute of Chemical Engineers [44].

For the calculation, the information of approximately 120 compo-
nents at the inlet and outlet of unit operations was given including heat
of combustion, lethal concentration (LC50) (Concentration of the
chemical in air that kills 50 % of the test animals during the observation
period), lower and upper flammability limit, vapor density and molec-
ular weight.

5.3.4. Resources efficiency (E-factor)

The E-factor is defined as the mass ratio of waste to product, as
depicted in Eq. (8) [45]. The E-factor is the actual amount of waste
produced in the process, defined as everything but the desired product.
It includes reagents and solvent losses, all process aids and byproducts,
and so on. However, water is generally excluded from the calculation
[46]. In most cases, inclusion of water used in the process can lead to an
exceptionally high E-factor, which makes the environmental impact
appear much worse than it actually is and indicate that a process is not
particularly efficient when it actually is [47]. It is important to clarify
that when an aqueous waste stream is considered in the process, only the
inorganic salts and organic compounds contained in the water are
counted.

Eraer = mass of all wastes 8)
mass of product

The ideal value of the E-factor is zero. Nevertheless, different in-
dustry sectors present different E-factors depending on the degree of the
technical development of the industry, the competitiveness of particular
products, the cost of waste as a part of the products selling price and
other factors. Common E-factor’s values in the chemical industry sectors
have are reported in Table 3. Moreover, this metric is a useful measure of
the potential environmental acceptability of a chemical process. For
instance, a higher E-factor means more waste and, thus, greater negative
environmental impact [46].

5.3.5. Mass intensity (MI)

Mass Intensity (MI) measures the amount of material needed to
synthesize a desired product or products, as depicted in Eq. (9). It takes
into account yields, stoichiometry, solvents, and reagents used in a

Table 3

E-factors in the chemical industry.
Type of industry sector E-Factor™
Oil refining <0.1
Bulk Chemicals <1-5
Fine Chemicals 5-50
Pharmaceuticals 25-100

* kg waste/kg product.
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reaction mixture. More precisely, MI considers everything that is put
into a reaction vessel including reactants, reagents, solvents, catalysts
and so on. It also includes all mass used in acid, base, salt and organic
solvent washes, and organic solvents used for extractions, crystalliza-
tions, or for solvent switching [45,48]. MI is expressed on a weight/-
weight basis and in the ideal situation it should present a value of 1.

total mass used in a process or process step

MI ©

mass of product
As can be observed from Eq. (9), the calculation of MI includes
everything that is used in a process or process step, but water is excluded
from the calculation. Water is not included because is generally not
integral to the chemical reaction and is mainly used during work-up
operations such as phase separations (e.g. scrubbing and fractionation).

5.3.6. Multi-objective function for intensification

In this work, as described previously, the simultaneous evaluation of
economics, environmental impact, inherent safety and sustainability is
performed at the design stage, which represents an important
improvement in selecting the optimal intensified process route that
meets these indicators. More specifically, the multi-objective optimiza-
tion problem considers the maximization of the return on investment
and the minimization of the environmental impact, individual risks and
process wastes towards the synthesis of the most promising design for
the BtL conversion through gasification-based technologies.

Thus, once the economic, environmental, safety and sustainability
(green metrics) indexes and the decision variables have been defined,
the mathematical optimization problem considering all performance
indexes, variables and constraints can be expressed according to Eq.
(10).

1
min W,EI99,IR,EMNM,MI :f(Nt[7FSi7Ri7FD/B,7VF7LF7D[7QR('bLaFC,,,)
10$)

where Nt; represents the total number of stages of column i, Fs; is the
feed stage of column i, R; is the reflux ratio of column i, Fp/p, is the
distillate or bottom flowrate, VF is the interconnection vapor flow, LF is
the interconnection liquid flow, D; is the diameter of column i, Qgep, is
the reboiler duty of column i, and F;, is the flowrate of component j in
column i.

6. Variations and manipulation of unit operations’ design
parameters

In BtL processes, separations are essential components for the
removal of impurities and for the recovery of product fractions that need
to be upgraded into transportation fuels, as can be observed from Figs. 2
and 3. However, they are highly energy-intensive and thus, account for a
high proportion of the plant costs. PI can be adopted to reduce the en-
ergy consumption and to improve the separation units’ efficiency by
manipulation of their design parameters and generating intensified
solutions.

For these reasons, in this work, the multi-objective optimization of
each case study considered the intensification of 10 separation units
(C.1-C.9 and a stripper) through the manipulation of 47 continuous and
discrete variables and the solution of the MESH equations. The optimi-
zation algorithm considers the variation of these decision variables and
the evaluation of the objective function formed by the combination of
the five performance indexes. Table 4 shows the type of unit operation
and the corresponding decision variables used in the optimization.
Likewise, in Table 4, as example the search range used in the optimi-
zation for intensification of BC3-GLTUF is presented.

Initially, the search ranges were wider but after some optimization
trials it was found that the range could be narrowed to reduce the
convergence time and to focus on the feasible region. The search range is
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Table 4
Type of unit operation and decision variables used in the multi-objective
optimization.

Type of unit operation Type of Category Search range
variable
Number of Discrete 5-15
stages
Feed stages Discrete 5-15
Absorber (C.1) Diameter Continuous 1-6 (m)
Water inlet Contintous 23150—-23600
flowrate (kmol/h)
Number of Discrete 10-25
stages
Feed stage Discrete 7-16

Distillation column (C.2-

C.8); e.g. ranges for C.3 Continuous  4.5-8

31900—-32000

Reflux ratio
Bottom

Conti
flowrate ontinuous (kg/h)
Diameter Continuous 1-3 (m)
Number of .
Discrete 10-16
stages
Feed stage Discrete 9-16
Bott _
ottom Contintous 6700—6850 (kg/
flowrate h)
. . Diameter Continuous 1-7.5 (m)
Fr;:rtilon:;mn column (C9) g/ oam inlet Continuous  11000-14000
PP flowrate (kg/h)
Main column connecting
stages:
Liquid Draw Discrete 10-12
(0]
verhead Discrete 7-9
return
Ni
umber of Discrete 3-6
stages

given to iteratively adjust the decision variables of each unit operation
until achieving the optimal solution to the specified objectives.

Furthermore, for the optimization problem of the selected process
flowsheets’ configurations, the product streams flowrates were manip-
ulated and the recoveries of the light key components or heavy key
components in each distillate and/or bottom stream were included as
constraints, as depicted as follows.

If (minmmw,y —actual,ccovcry) <0, then the penalty is equal to O,

else penalty = minrccovcry - aCtualrccovcry) * 1000) an

This means that if the actual component flowrate is higher or equal to
the minimum recovery requirement, then the constraint is satisfied, and
no penalty is given to the objective function. On the other hand, if the
actual flowrate is lower than the minimum recovery then a big number
equal to ((Min,ecorery — ACUALcorery) ¥1000) is given as penalty. Thus, the
optimization problem is restricted to satisfy the constraint vector of mass
flowrate for the interest components in the stream mixture. The same
restrictions were applied for the constraint vector of purity.

7. Generation and evaluation of separation processes’
intensified solutions

After the optimization of the case studies BC3-GLTUF and CA1l-
GLTHT, the optimal set of results for the separation processes’ deci-
sion variables and the corresponding economic, safety, environmental
and green chemistry metrics indexes values were collected. The opti-
mizations were carried out on two computers, one with Intel ® Core ™
i7-4770 @3.40 GHz and 8 GB of RAM, and the other with Intel ® Core ™
i5-2320 @3.00 GHz and 12 GB of RAM. To generate the intensified
solutions 10 separation units and 47 variables were considered for each
case study including continuous and discrete variables. For the gener-
ation of the optimal intensified solutions, a computing time of approx-
imately 2 months was necessary due to the complexity of the process
designs.

From all the intensified solutions generated by the optimization
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algorithm, pareto fronts are calculated. Pareto fronts are usually calcu-
lated by turning the multi-objective optimization problem into a
sequence of single-objective optimization problems or by exploiting
evolutionary methods in which a set of candidate optimal solutions are
trace along the Pareto front [49]. Thus, to reduce and identify the
intensified alternatives that better meet the objective function, pareto
fronts between the indexes are generated. Then, the optimal vector is
identified by analyzing all the trends between the five different and
contrasting indexes representing the economic factor (return on in-
vestment), environmental impact (eco-indicator 99), and the process
safety (individual risk) as well as the incorporation of green metrics
(resources efficiency and mass intensity). This optimal vector represents
the intensified solution that meets the objective function without
compromising one index more than the other. From the selected optimal
vector, the corresponding design parameters for each intensified case
study are found and collected. By applying this approach, the most
promising intensified process route among all the process routes can be
identified.

From the results collected for the performance indexes, pareto front
charts were generated as depicted in Figs. 5-8. All Pareto fronts were
obtained after 96,000 evaluations, as afterwards, the vector of decision
variables did not produce any meaningful improvement. Thus, it was
assumed that the DETL algorithm achieved the convergence at the tested
numerical terms. The results reported here correspond to the best so-
lutions obtained. Each vector in the plots represents a different design
for the case studies under analysis.

In Figs. 5 and 6, the pareto fronts (for BC3-GLTUF and CA1-GLTHT,
respectively) comparing the individual risk (IR) vs the Eco-indicator 99
(EI99) are presented. From the pareto fronts, the optimal vector, which
corresponds to the process design that minimizes both the individual
risks and environmental impact was selected. According to this, in
Figs. 5 and 6, the vector highlighted in red is the one selected as the best
structure that has been identified in the subspace of alternatives not only
considering these two indexes, but by considering the five indexes
simultaneously.

In Fig. 7, the pareto front for CAI-GLTHT comparing the return on
investment (ROI) vs the individual risks (IR) is presented. As can be
observed from Fig. 7, the trend of the pareto front shows that if the re-
turn on investment increases the individual risks of the plant are also
increased. When selecting the optimal vector, it is necessary to analyze
all the intensified solutions and select the one that achieves the desired
objective without compromising the indexes. This analogy is necessary
to find the most suitable values for the design parameters that will in-
crease the feasibility of the plant. In this optimization approach the
objective is to find the optimal vector that presents the maximum ROI
and the minimum IR simultaneously. This vector has been highlighted in
red as depicted in Fig. 7. For representation purposes, only the pareto
front for CAI-GLTHT is presented since the same trend was observed for
BC3-GLTUF.

In Fig. 8, the Pareto front for the mass intensity (MI) vs the resources
efficiency (E-factor) is presented for the case study BC3-GLTUF. From
Fig. 8, it can be observed that the vectors in the pareto front present a
linear trend, which means that the amount of material needed to syn-
thesize a desired product (MI) is a direct function of the mass ratio of
waste to product (E-Factor). The relationship shown in Fig. 8 between
MI and the E-factor meets Eq. (12) [50]. The same trend was observed in
the pareto front for case study CA1-GLTHT.

Mass intensity = E Factor + 1 12)

From the pareto fronts calculated and the charts presented, the
design parameters (number of stages, feed stage, reflux ratio, bottom
flowrate, diameter, condenser and reboiler duty and so on) for the
optimal vectors were collected. The performance indexes’ optimal vec-
tors correspond to the same set of design parameters for each of the case
studies. In the following section, a detailed discussion regarding the
relationship between the performance indexes and the design
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Fig. 5. Pareto front between IR and EI99 for BC3-GLTUF.
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Fig. 8. Pareto front between MI and E-Factor for BC3-GLTUF.

parameters is given.

8. Results and discussion: Selection of optimal intensified
designs

From the vectors presented in Figs. 5-8, the corresponding design
parameters values for each of the separation units involved in each
intensified case study were collected, as presented in Tables 5-8. The
results allowed to compare the design parameters and performance in-
dexes of the initial configurations with their corresponding intensified
configurations. Likewise, it was possible to evaluate the impact of the
design parameters on the performance indexes.

In Tables 5 and 6, the optimal results considering the design pa-
rameters and performance indexes for BC3-GLTUF/I (where I refers to
the intensified version) are presented and compared with the initial BC3-
GLTUF configuration. Likewise, in Tables 7 and 8, the design parameters
and performance indexes for the process configuration CA1-GLTHT and
the corresponding intensified configuration (CA1-GLTHT/I) are pre-
sented. The initial design parameters for each column C.n is presented
and compared with the intensified version of each column C.n/I, where
n is the column number.

From the pareto fronts, the trends between the performance indexes
can be observed. For instance, from Figs. 5 and 6, it is possible to observe
that for the process design vector that causes less damage with less
frequency, the value for the Eco-indicator 99 is the highest, which means
that the safer it is process, the greater the environmental impact will be.
Contrary, to obtain a process with lower environmental impact, the
probability of individual accidents will increase, including instanta-
neous and continuous releases. For instance, as can be observed in both
Figs. 5 and 6, the process design with the lowest environmental impact,
depicted in the pareto fronts charts as vector A, is the one with the
highest IR of the process. And vice versa, the process design (Vector B)
that presents the lowest IR is also the one that presents the highest
environmental impact. Thus, the selection of the optimal vector is not
based on the one with the lowest environmental impact or the lowest
individual probability risk from all the alternatives but the one that
presents a balanced behavior among the performance indexes and thus,
achieves the objective function considering all the indexes
simultaneously.

More specifically, for the case studies, the optimal vector is the one
with the separation units’ design parameters that achieve the objective
considering the combination of the indexes presented in Figs. 5-8.
Meaning that the individual risk is minimized, smaller equipment sizes
and lower condenser and reboiler duties are achieved and thus, a lower
value of the Eco-indicator 99 is observed. Likewise, the intensified
design presents lower values for the E-Factor and MI metrics, which

11

indicates that the amount of wastes is being reduced and the process
efficiency is being increased, as presented in Fig. 8 for the relationship
between these indexes. Last but not less important, the profitability of
the plant is increased by achieving higher values of the return on
investment.

Concerning the relationship between the design parameters and the
performance indexes, from the plots and the data for the case studies’
initial configurations, the initial designs (depicted in Tables 5 and 7 as C.
n) present higher environmental impacts due to separation units with
greater number of stages, larger diameters and thus, more steel neces-
sary to build the equipment. Moreover, higher reflux ratios and reboiler
and condenser duties are observed, which reflects on higher energy
consumption. This is because a higher condenser and reboiler duty mean
higher steam and electricity consumption. Likewise, an increase of the
reflux ratio will consequently increase the reboiler duty and the corre-
sponding EI99 of the column.

In addition, if the column diameter is not sized properly, the column
will not perform correctly, and operational problems will occur leading
to an increase on the occurrence frequency of incidents like leaking or
total loss of matter. This analogy explains why the separation units’
initial configurations (C.n) present higher individual risks (IR).

From the data reported in Tables 5 and 7, it is possible to observe in
detail these trends. For instance, for BC3-GLTUF/I (Table 5), the ma-
jority of the intensified column designs (C.1/1, C.2/1, C.4/1, C.5/I and
C.6/1) present higher number of stages than the initial designs but pre-
sent smaller diameters and lower reflux ratios, leading to lower
condenser and reboiler duties and lower environmental impact. These
behaviors were also observed in the intensified separation units C.1/1,
C.2/1, C.4/1 and C.5/1 for CA1-GLTHT/I and lower environmental
impact (EI99) was achieved, as depicted in Table 7. The calculated
values for the eco-indicator EI99 were of 23,102,926.8 and
27,125,724.5 (points/year) for the initial designs of BC3-GLTUF and
CA1-GLTHT, respectively, compared to the EI99 values of the intensified
versions, which were 16,067,458.6 (points/year) for BC3-GLTUF/I and
23,265,289.5 (points/year) for CA1-GLTHT/I. Likewise, since the col-
umns’ diameters of the initial designs were not sized properly, these
designs presented higher values of IR compared to the intensified de-
signs. For instance, the IR values of the initial designs BC3-GLTUF and
CA1-GLTHT were of 5.82 x 10 *(Probability/year) and 6.18 x
10~*(Probability/year), respectively, compared to the ones of the
intensified designs that were 5.81 x 1074 (Probability/year) for BC3-
GLTUF/I and 6.137 x 10~* (Probability/year) for CA1-GLTHT/I. This
also is reflected on the economic metrics. For instance, since the inten-
sified separation units for BC3-GLTUF present smaller equipment sizes
and lower energy consumption, a lower TCOM per gasoline gallon
equivalent of $6.76/gge was achieved compared to $6.79/gge for the
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Table 5

Design parameters and performance indexes for BC3-GLTUF and BC3-GLTUF/I (Intensified configuration).

C.8/1 C.9 C.9/1

C.8

C.7 C.7/1

C.6/1

C.6

C.5/1

C5

C.4/1

C.4

C.3/1

C.3

C.2/1

C.2

C.1/1

C.1

Design parameters

15
15

60 60 27 24 15
36 35 23 15

17 10 15 10 13

15

19
11

20
12

22

19

Number of stages

Feed stage

15

4.4 2.6

1.3

1.5

2.1

4.5

5.8

1.1

Reflux ratio

6707
4.3

6831
7.3

2710.8
1.4

2750
1.2

4508.2
1.7
1851
1871

4530

1.1

10589.8
1.7

10600

1.6

28508.9
1.2

28500
1.5

36008.6
1.8

36088
2.4

31953.3

31947
4.5

44191.8

7.8

44113
10.2

Bottom flowrate (kg/h)

Diameter (m)

2.8

5.7

1150 36554 33209
1211

1297
1356

22749 8472 6927 5633 4093 2011 1814 4226 4433 2008
9084 2382 5470 2012

36395

49296
62965

Condenser duty (kW)
Reboiler duty (kW)

5698

2573

10656

8966

10491

23188.3

23151.9

Water inlet flowrate (kmol/h)

BC3-GLTUF/I

BC3-GLTUF

Performance
Indexes

1.253
2.253
6.76

E-factor (kg/kg)

MI (kg/kg)

16,067,458.6
0.000581

1.259 EI99 (Points/y)
21

2.259
6.79

E-factor (kg/kg)

MI (kg/kg)

23,102,926.8
0.000582

18

EI99 (Points/y)

IR (Probability/y)

ROI (%/y)

IR (Probability/y)

ROI (%/y)

TCOMGGE (50000 kg/h feed)

TCOMGGE (50000 kg/h feed)

12
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Table 6
Additional design parameters considered for the fractionation column and
coupled stripper (C.9) for BC3-GLTUF.

Design parameters C.9 C.9/1
Steam inlet flowrate (kg/h) 12000 12065
Liquid Draw 10 12
Overhead return 8 8
Stripper-Number of stages 4 5

initial designs. Likewise, a higher return on investment of 21(%/y) was
achieved compared to the 18(%/y) calculated for the initial design.

For the intensified design CA1-GLTHT/I lower TCOMggg and higher
ROI values were calculated. For instance, the TCOMggg was reduced
from $5.59/gge to $5.55/gge and the ROI increased from 19(%/y) to 22
(%/y).

Moreover, concerning the green chemistry metrics, the optimal
design of the process allows to improve the recovery and conversion of
the product streams without the use of excess reactants and therefore, a
reduction of wastes is achieved. The less amount of wastes produced
lead to an increase of the process efficiency and thus, a reduction on the
E-Factor and MI. For BC3-GLTUF, the E-Factor and MI values were of

1.259 ("é) and 2.259 (g) compared to 1.253 <£—§) and 2.253 <g)

calculated for the intensified configuration BC3-GLTUF/I. The same was
observed for CA1-GLTHT, which E-Factor and MI values were 1.094

(%) and 2.094 <%>, respectively, compared to the intensified design

that presented E-Factor values of 1.092 <%§) and MI values of 2.092

&)

Furthermore, regarding the comparison between both intensified
processes, BC3-GLTUF/I presents lower EI99 and IR compared to CA1-
GLTHT/I. The main reason why CA1-GLTHT/I presents higher IR is
because it presents higher production of transportation fuels and thus,
since the calculation of the IR considers instantaneous and continuous
chemical releases, it is obvious that if the inlet flow of the unit opera-
tions increase then the IR will increase. Therefore, in the case of an
event, greater affectation and duration of the incidents will be incurred
due to more source of toxic releases, fires, and explosions.

Regarding the EI99, the condenser and reboiler duties reported in
Table 7 for CA1-GLTHT/I for most of the columns are higher compared
to the ones reported in Table 5 for BC3-GLTUF/IL. This is observed
because an increase on the energy consumption is presented due to
steam and electricity consumption to recover the higher product flow-
rates produced by CA1-GLTHT/I. Likewise, in CA1-GLTHT/I most of the
columns (C.2, C.3, C.5 and C.8) present greater number of stages
compared to BC3-GLTUF/I and thus, more steel to build the equipment
is required and an increase on the EI99 is presented.

On the other hand, BC3-GLTUF/I presents higher E-Factor and MI,
which translates to less process efficiency due to higher production of
wastes. The process efficiency can be reflected in the total biofuels
production since BC3-GLTUF/I presents a diesel production of 23,191.9
kg/h and a gasoline production of 27,509.5 kg/h, which in total is lower
compared to the total production of CA1-GLTHT/I (diesel production of
14,399.9 kg/h and a gasoline production of 39,177.2 kg/h). The higher
productivity achieved in CA1-GLTHT/I is also reflected on the TCOMggg
of $5.55/gge and the higher ROI of 22 (%/y), as reported in Table 7.
Therefore, due to the process efficiency and economic metrics the CA1-
GLTHTY/1 is the optimal process route for the maximization of the pro-
duction of biofuels and ROI, and for the minimization of the wastes and
the TCOMggg. The detailed stream table for CA1-GLTHT/1 is presented
in Table S1, and the corresponding process flowsheet set-up in Aspen
Plus is depicted in Fig. S1.
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Table 7

Design parameters and performance indexes for CA1-GLTHT and CA1-GLTHT/I (Intensified configuration).

C.8/1 Cc.9 C.9/1

C.8

C.7 C.7/1

C.6/1

C.6

C.5/1

C.5

C.4/1

C.4

C.3/1

C.3

C.2/1

C.2

C.1/1

C.1

Design parameters

15
15

52 27 39 15
22 15

39

60
36

10

16
10

12
10

20 13 16

20
12

24

14

20

Number of stages

Feed stage

15

4.6

2.7

5.2 2.9 0.82

1.1

Reflux ratio

3519
6.2

3550
7.1

5243.8
1.4
2355

2479

5256
1.7

9035.7
1.6

9017
1.6

24210 24216.1
2.1

2.3
7684

30302.6
2.1

30350
1.7

45110.7
3.3

45110
3.2

16896
1.5
5303
6466

16898
3.5

25225.4
4.2

25245
11.2

Bottom flowrate (kg/h)

Diameter (m)

2.6

5.7

3372 2949 37163 37539
3075

3699
3813

32325 6057 11670 11361 3225 2962 7615
17736 17437 2416 2151

43202

56703
67608

Condenser duty (kW)
Reboiler duty (kW)

3493

10228

10207

7243

23465.4

23151.9

Water inlet flowrate (kmol/h)

CA1-GLTHT/I

CA1-GLTHT

Performance
indexes

1.092
2.092
5.55

E-factor (kg/kg)

MI (kg/kg)

23,265,289.5
0.0006137

1.094 EI99 (Points/y)
22

2.094
5.59

E-factor (kg/kg)

MI (kg/kg)

27,125,724.5
0.000618

19

EI99 (Points/y)

IR Probability/y)

ROI (%/y)

IR (Probability /y)

ROI (%/y)

TCOMGGE (50000 kg/h feed)

TCOMGGE (50000 kg/h feed)

13
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Table 8
Additional design parameters considered for the fractionation column and
coupled stripper (C.9) for CA1-GLTHT.

Design parameters C.9 C.9/1
Steam inlet flowrate (kg/h) 12000 11957.1
Liquid Draw 9 10
Overhead return 8 8
Stripper-Number of stages 4 5

9. Conclusion

In this work, the development and implementation of a multi-
objective optimization methodology for synthesis of novel intensified
BtL technologies was performed. The proposed optimization method-
ology was implemented for the synthesis and intensification of two
gasification-based technological routes for production of biofuels in a
more sustainable, environmentally, safety and economically feasible
manner. In a previous work, from the implementation of a BtL pro-
cessing superstructure algorithm, new BtL process routes were obtained
under different product profile scenarios. From the different scenarios,
the two gasification-based process routes that presented higher pro-
duction of both gasoline and diesel fuels were selected as case studies for
this work.

For the synthesis of the case studies, in the previous work, the
minimization of production costs was considered, however, other
important sustainable, environmental and safety indexes to increase the
feasibility of the processes were not included. Therefore, the focus of the
implementation of this methodology was to synthesize the intensified
process configurations, where the optimal selection of separation units’
design parameters meets the combination of five objectives, namely
economic, safety and environmental indexes, and green chemistry
metrics towards more sustainable practices.

More specifically, a DETL multi-objective optimization technique in
a hybrid platform (Aspen Plus- Microsoft Excel) was implemented to
find the optimal design parameters that minimize the economic, safety
and environmental factors. The DETL method was implemented for the
two case studies that promote the production of both gasoline and
diesel, namely BC3-GLTUF and CA1-GLTHT. For the multi-objective
optimization, unit operations’ design variables (number of stages, feed
stage, reflux ratio, heat duty, diameter, etc.) and performance indexes
(Return on Investment, Eco-indicator 99, individual risk, MI and E-
Factor) were considered. From the optimization results, the CA1-GLTHT
optimized configuration was selected as the optimal process route. This
process route presented higher productivity, lower production of wastes,
lower TCOMggg and higher ROI and process efficiency.

In this work, intensified solutions have been generated for sustain-
able BtL fuels processes, which allow to have the state of the art of green
processes for industrial application considering these new sustainable
trends and circular economy. Overall, it was demonstrated that by
applying the systematic optimization methodology, lignocellulosic BtL
processes can be intensified considering as objective function the com-
bination of five different and contrasting indexes and that the relation-
ship between the indexes and the variation of the separation units’
decision variables can be quantified.

Moreover, to make the proposal economically viable for its industrial
application, aspects like the raw material availability, location, plant
capacity, transportation costs, government policies and so on need to be
taken into account.

Author contributions

The manuscript was written through contributions of all authors. All
authors have given approval to the final version of the manuscript.



P. Ibarra-Gonzalez et al.
Declaration of Competing Interest

The authors report no declarations of interest.
Acknowledgments

The authors acknowledge financial support from CONACYT—SENER
The Mexican National Council for Science and Technology (Grant
326204/439098) and the University of Southern Denmark.

Appendix A. Supplementary data

Supplementary material related to this article can be found, in the
online version, at doi:https://doi.org/10.1016/j.cep.2021.108327.

References

[1] P. Ibarra Gonzdlez, B.-G. Rong, Integrated methodology for optimal synthesis of
lignocellulosic biomass-to-liquid fuels production processes: 2. Superstructure
MINLP modeling and evaluation for optimal biofuels process synthesis and
integration, Ind. Eng. Chem. Res. 59 (2020) 14898-14913, https://doi.org/
10.1021/acs.iecr.0c02903.

[2] J.P.M. Sanders, J.H. Clark, G.J. Harmsen, H.J. Heeres, J.J. Heijnen, S.R.A. Kersten,
W.P.M. van Swaaij, J.A. Moulijn, Process intensification in the future production of
base chemicals from biomass, Chem. Eng. Process. Process Intensif. 51 (2012)
117-136, https://doi.org/10.1016/j.cep.2011.08.007.

[3] D.F. Rivas, E. Castro-Hernandez, A.L. Villanueva Perales, W. van der Meer,

Evaluation method for process intensification alternatives, Chem. Eng. Process.

Process Intensif. 123 (2018) 221-232, https://doi.org/10.1016/j.cep.2017.08.013.

S. Sitter, Q. Chen, I.E. Grossmann, An overview of process intensification methods,

Curr. Opin. Chem. Eng. 25 (2019) 87-94, https://doi.org/10.1016/j.

coche.2018.12.006.

[5] A. Stankiewicz, J.A. Moulijn, Process intensification: transforming chemical
engineering, Chem. Eng. Prog. 96 (2000) 22-33.

[6] T. Van Gerven, A. Stankiewicz, Structure, energy, synergy, time-the fundamentals
of process intensification, Ind. Eng. Chem. Res. 48 (2009) 2465-2474, https://doi.
0rg/10.1021/ie801501y.

[7] B.G. Rong, E. Kolehmainen, I. Turunen, Methodology of conceptual process
synthesis for process intensification, Comput. Aided Chem. Eng. 25 (2008)
283-288, https://doi.org/10.1016/51570-7946(08)80052-1.

[8] D.A. Reay, C. Ramshaw, A. Harvey, Process Intensification: Engineering for
Efficiency, Sustainability and Flexibility, 2nd ed., Elsevier, 2013 https://doi.org/
10.1016/C2012-0-00253-0.

[9] M.H. Barecka, M. Skiborowski, A. Gorak, A novel approach for process retrofitting
through process intensification: ethylene oxide case study, Chem. Eng. Res. Des.
123 (2017) 295-316, https://doi.org/10.1016/j.cherd.2017.05.014.

[10] C. Gutiérrez-Antonio, A. Bonilla-Petriciolet, Stochastic optimization for process
intensification, in: J.G. Segovia-Hernandez, A. Bonilla-Petriciolet (Eds.), Process
Intensif. Chem. Eng., 1st ed., Springer International Publishing, 2016, pp. 261-277,
https://doi.org/10.1007/978-3-319-28392-0_9.

[11] W. Barnes, C.-C. Chen, T. Fowler, P. McMahon, A.K. Nagavarapu, D. Shatto, Novel
adsorption-based gas treating technology platform for upstream gas separations,
Offshore Technol. Conf., Offshore Technology Conference (2018), https://doi.org/
10.4043/29001-MS.

[12] B.-G. Rong, Synthesis of dividing-wall columns (DWC) for multicomponent
distillations—A systematic approach, Chem. Eng. Res. Des. 89 (2011) 1281-1294,
https://doi.org/10.1016/j.cherd.2011.03.014.

[13] C.E. Torres-Ortega, M. Errico, B.G. Rong, Design and optimization of modified non-
sharp column configurations for quaternary distillations, Comput. Chem. Eng. 74
(2015) 15-27, https://doi.org/10.1016/j.compchemeng.2014.12.006.

[14] P. Lutze, D.K. Babi, J.M. Woodley, R. Gani, Phenomena based methodology for
process synthesis incorporating process intensification, Ind. Eng. Chem. Res. 52
(2013) 7127-7144, https://doi.org/10.1021/ie302513y.

[15] S.E. Demirel, J. Li, M.M.F. Hasan, A general framework for process synthesis,
integration, and intensification, Ind. Eng. Chem. Res. 58 (2019) 5950-5967,
https://doi.org/10.1021/acs.iecr.8b05961.

[16] S.E.Demirel, J. Li, M.M.F. Hasan, Systematic process intensification using building
blocks, Comput. Chem. Eng. 105 (2017) 2-38, https://doi.org/10.1016/j.
compchemeng.2017.01.044.

[17] D.K. Babi, P. Lutze, J.M. Woodley, R. Gani, A process synthesis-intensification
framework for the development of sustainable membrane-based operations, Chem.
Eng. Process. Process Intensif. 86 (2014) 173-195, https://doi.org/10.1016/].
cep.2014.07.001.

[18] D.K. Babi, J. Holtbruegge, P. Lutze, A. Gorak, J.M. Woodley, R. Gani, Sustainable
process synthesis-intensification, Comput. Chem. Eng. 81 (2015) 218-244, https://
doi.org/10.1016/j.compchemeng.2015.04.030.

[19] H. Alcocer-Garcia, J.G. Segovia-Hernandez, O.A. Prado-Rubio, E. Sanchez-
Ramirez, J.J. Quiroz-Ramirez, Multi-objective optimization of intensified processes
for the purification of levulinic acid involving economic and environmental

[4

14

[20]
[21]
[22]

[23]

[24]

[25]

[26]

[27]
[28]

[29]

[30]

[31]

[32]

[33]

[34]
[35]
[36]

[371

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

Chemical Engineering and Processing - Process Intensification 162 (2021) 108327

objectives, Chem. Eng. Process. - Process Intensif. 136 (2019) 123-137, https://
doi.org/10.1016/j.cep.2019.01.008.

A. Peltola (Ed.), Finnish Statistical Yearbook of Forestry, 44th ed., 2014.

J.-0. Loman (Ed.), Swedish Statistical Yearbook of Forestry 2008, 7th ed., Swedish
Forest Agency, Jonkoping, 2008.

T. Johansson, Mixed stands in Nordic countries—A challenge for the future,
Biomass Bioenergy 24 (2003) 365-372, https://doi.org/10.1016/50961-9534(02)
00165-4.

P. Ibarra-Gonzalez, B.-G. Rong, 10. Lignocellulosic biofuels process synthesis and
intensification: superstructure-based methodology. Process Intensif., De Gruyter,
2019, pp. 277-325, https://doi.org/10.1515/9783110596120-010.

A. de Klerk, Fischer-Tropsch fuels refinery design, Energy Environ. Sci. 4 (2011)
1177, https://doi.org/10.1039/c0ee00692k.

U.S. Betchel-, Department of Energy, Aspen Process Flowsheet Simulation Model of
a Battelle Biomass-Based Gasification, Fischer—Tropsch Liquefaction and
Combined-Cycle Power Plant, 1998.

Z. Sa, T. Rahardjo, C. Valkenburg, L.J. Snowden-Swan, S.B. Jones, M.A. Machinal,
Techno-economic Analysis for the Thermochemical Conversion of Biomass to
Liquid Fuels, 2011.

P. Mponzi, Production of Biofuels by Fischer Tropsch Synthesis, 2011 (Accessed 7
December 2020), https://lutpub.lut.fi/handle/10024,/71973.

M. Binder, M. Kraussler, M. Kuba, M. Luisser, Hydrogen from biomass gasification.
IEA Bioenergy, 2018.

P.M. Maitlis, A. de Klerk, Greener Fischer-Tropsch Processes for Fuels and
Feedstocks, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, 2013,
https://doi.org/10.1002/9783527656837.

Aspen Physical Property System: Physical Property Methods and Models 11.1,
2001.

V.N. Kabadi, R.P. Danner, A modified Soave-Redlich-Kwong equation of state for
water-hydrocarbon phase equilibria, Ind. Eng. Chem. Process Des. Dev. 24 (1985)
537-541, https://doi.org/10.1021/i200030a004.

M. Errico, E. Sanchez-Ramirez, J.J. Quiroz-Ramirez, J.G. Segovia-Hernandez, B.-
G. Rong, Synthesis and design of new hybrid configurations for biobutanol
purification, Comput. Chem. Eng. 84 (2016) 482-492, https://doi.org/10.1016/J.
COMPCHEMENG.2015.10.009.

C. Gutiérrez-Antonio, Multiobjective stochastic optimization of dividing-wall
distillation columns using a surrogate model based on neural networks, Chem.
Biochem. Eng. Q. 29 (2016) 491-504, https://doi.org/10.15255/
CABEQ.2014.2132.

R. Storn, Differential Evolution — a Simple and Efficient Heuristic for Global
Optimization over Continuous Spaces, 1997, pp. 341-359.

N.K. Madavan, M. Field, Multiobjective Optimization Using a Pareto Differential
Evolution Approach, 2002, pp. 1145-1150.

F. Glover, Tabu search—Part I, ORSA J. Comput. 1 (1989) 190-206, https://doi.
org/10.1287/ijoc.1.3.190.

H. Zhang, G.P. Rangaiah, A hybrid global optimization algorithm and its
application to parameter estimation problems, Asia-Pacific J. Chem. Eng. 6 (2011)
379-390, https://doi.org/10.1002/apj.548.

M. Srinivas, G.P. Rangaiah, Differential evolution with tabu list for solving
nonlinear and mixed-integer nonlinear programming problems, Ind. Eng. Chem.
Res. 46 (2007) 7126-7135, https://doi.org/10.1021/IE070007Q.

G.P. Rangaiah, Stochastic Global Optimization: Techniques and Applications in
Chemical Engineering, World Scientific, 2010.

W.D. Seider, D.R. Lewin, J.D. Seader, S. (Chemical engineer) Widagdo, R. (Rafiqul)
Gani, K.M. Ng, Product and process design principles: synthesis, analysis, and
evaluation (n.d.).

M. Goedkoop, R. Spriensma, The Eco-Indicator 99: a Damage Oriented Method for
Life Cycle Impact Assessment- Methodology Report, 2001.

M. Goedkoop, R. Spriensma, The Eco-Indicator 99 a Damage Oriented Method for
Life Cycle Impact Assessment- Annex, 2001.

M. Errico, E. Sanchez-Ramirez, J.J. Quiroz-Ramirez, B.-G. Rong, J.G. Segovia-
Hernandez, Multiobjective optimal acetone-butanol-ethanol separation systems
using liquid-liquid extraction-assisted divided wall columns, Ind. Eng. Chem. Res.
56 (2017) 11575-11583, https://doi.org/10.1021/acs.iecr.7b03078.

Center for Chemical Process Safety, Guidelines for Chemical Process Quantitative
Risk Analysis, 2nd ed., John Wiley & Sons, Inc., Hoboken, NJ, USA, 2010 https://
doi.org/10.1002/9780470935422.

C. Jiménez-Gonzalez, D.J.C. Constable, C.S. Ponder, Evaluating the “Greenness” of
chemical processes and products in the pharmaceutical industry—A green metrics
primer, Chem. Soc. Rev. 41 (2012) 1485-1498, https://doi.org/10.1039/
C1CS15215G.

R.A. Sheldon, The e factor: fifteen years on, Green Chem. 9 (2007) 1273-1283,
https://doi.org/10.1039/b713736m.

M. (Mike) Lancaster, Green Chemistry: an Introductory Text, 3rd ed., Royal Society
of Chemistry, 2016.

D.J.C. Constable, A.D. Curzons, V.L. Cunningham, Metrics to ‘green’
chemistry—Which are the best? Green Chem. 4 (2002) 521-527, https://doi.org/
10.1039/B206169B.

K. Deb, Multi-objective optimisation using evolutionary algorithms: an
introduction. Multi-Objective Evol. Optim. Prod. Des. Manuf., Springer, London,
2011, pp. 3-34, https://doi.org/10.1007/978-0-85729-652-8 1.

A.P. Dicks, A. Hent, The E Factor and Process Mass Intensity, Springer, Cham,
2015, pp. 45-67, https://doi.org/10.1007/978-3-319-10500-0_3.


https://doi.org/10.1016/j.cep.2021.108327
https://doi.org/10.1021/acs.iecr.0c02903
https://doi.org/10.1021/acs.iecr.0c02903
https://doi.org/10.1016/j.cep.2011.08.007
https://doi.org/10.1016/j.cep.2017.08.013
https://doi.org/10.1016/j.coche.2018.12.006
https://doi.org/10.1016/j.coche.2018.12.006
http://refhub.elsevier.com/S0255-2701(21)00031-3/sbref0025
http://refhub.elsevier.com/S0255-2701(21)00031-3/sbref0025
https://doi.org/10.1021/ie801501y
https://doi.org/10.1021/ie801501y
https://doi.org/10.1016/S1570-7946(08)80052-1
https://doi.org/10.1016/C2012-0-00253-0
https://doi.org/10.1016/C2012-0-00253-0
https://doi.org/10.1016/j.cherd.2017.05.014
https://doi.org/10.1007/978-3-319-28392-0_9
https://doi.org/10.4043/29001-MS
https://doi.org/10.4043/29001-MS
https://doi.org/10.1016/j.cherd.2011.03.014
https://doi.org/10.1016/j.compchemeng.2014.12.006
https://doi.org/10.1021/ie302513y
https://doi.org/10.1021/acs.iecr.8b05961
https://doi.org/10.1016/j.compchemeng.2017.01.044
https://doi.org/10.1016/j.compchemeng.2017.01.044
https://doi.org/10.1016/j.cep.2014.07.001
https://doi.org/10.1016/j.cep.2014.07.001
https://doi.org/10.1016/j.compchemeng.2015.04.030
https://doi.org/10.1016/j.compchemeng.2015.04.030
https://doi.org/10.1016/j.cep.2019.01.008
https://doi.org/10.1016/j.cep.2019.01.008
https://doi.org/10.1016/S0961-9534(02)00165-4
https://doi.org/10.1016/S0961-9534(02)00165-4
https://doi.org/10.1515/9783110596120-010
https://doi.org/10.1039/c0ee00692k
http://refhub.elsevier.com/S0255-2701(21)00031-3/sbref0125
http://refhub.elsevier.com/S0255-2701(21)00031-3/sbref0125
http://refhub.elsevier.com/S0255-2701(21)00031-3/sbref0125
http://refhub.elsevier.com/S0255-2701(21)00031-3/sbref0130
http://refhub.elsevier.com/S0255-2701(21)00031-3/sbref0130
http://refhub.elsevier.com/S0255-2701(21)00031-3/sbref0130
https://lutpub.lut.fi/handle/10024/71973
http://refhub.elsevier.com/S0255-2701(21)00031-3/sbref0140
http://refhub.elsevier.com/S0255-2701(21)00031-3/sbref0140
https://doi.org/10.1002/9783527656837
http://refhub.elsevier.com/S0255-2701(21)00031-3/sbref0150
http://refhub.elsevier.com/S0255-2701(21)00031-3/sbref0150
https://doi.org/10.1021/i200030a004
https://doi.org/10.1016/J.COMPCHEMENG.2015.10.009
https://doi.org/10.1016/J.COMPCHEMENG.2015.10.009
https://doi.org/10.15255/CABEQ.2014.2132
https://doi.org/10.15255/CABEQ.2014.2132
http://refhub.elsevier.com/S0255-2701(21)00031-3/sbref0170
http://refhub.elsevier.com/S0255-2701(21)00031-3/sbref0170
http://refhub.elsevier.com/S0255-2701(21)00031-3/sbref0175
http://refhub.elsevier.com/S0255-2701(21)00031-3/sbref0175
https://doi.org/10.1287/ijoc.1.3.190
https://doi.org/10.1287/ijoc.1.3.190
https://doi.org/10.1002/apj.548
https://doi.org/10.1021/IE070007Q
http://refhub.elsevier.com/S0255-2701(21)00031-3/sbref0195
http://refhub.elsevier.com/S0255-2701(21)00031-3/sbref0195
http://refhub.elsevier.com/S0255-2701(21)00031-3/sbref0205
http://refhub.elsevier.com/S0255-2701(21)00031-3/sbref0205
http://refhub.elsevier.com/S0255-2701(21)00031-3/sbref0210
http://refhub.elsevier.com/S0255-2701(21)00031-3/sbref0210
https://doi.org/10.1021/acs.iecr.7b03078
https://doi.org/10.1002/9780470935422
https://doi.org/10.1002/9780470935422
https://doi.org/10.1039/C1CS15215G
https://doi.org/10.1039/C1CS15215G
https://doi.org/10.1039/b713736m
http://refhub.elsevier.com/S0255-2701(21)00031-3/sbref0235
http://refhub.elsevier.com/S0255-2701(21)00031-3/sbref0235
https://doi.org/10.1039/B206169B
https://doi.org/10.1039/B206169B
https://doi.org/10.1007/978-0-85729-652-8_1
https://doi.org/10.1007/978-3-319-10500-0_3

	Multi-objective optimization methodology for process synthesis and intensification: Gasification-based biomass conversion i ...
	1 Introduction
	1.1 Problem statement

	2 Methodology
	3 Selection of case studies
	4 Case studies flowsheet set-up and rigorous simulations on Aspen Plus
	5 Implementation of hybrid multi-objective optimization algorithm to case studies
	5.1 Multi-objective optimization method
	5.2 Hybrid platform: link between Microsoft Excel-aspen plus
	5.3 Objective function: performance indexes
	5.3.1 Return on investment (ROI)
	5.3.2 Environmental impact: eco-indicator 99 (EI99)
	5.3.3 Security impact: individual risks (IR)
	5.3.4 Resources efficiency (E-factor)
	5.3.5 Mass intensity (MI)
	5.3.6 Multi-objective function for intensification


	6 Variations and manipulation of unit operations’ design parameters
	7 Generation and evaluation of separation processes’ intensified solutions
	8 Results and discussion: Selection of optimal intensified designs
	9 Conclusion
	Author contributions
	Declaration of Competing Interest
	Acknowledgments
	Appendix A Supplementary data
	References


